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I. A PROOF FOR THEOREM 3

We begin with the following proposition.

Proposition I.1. Let δ2 > 0. Then, with probability 1− δ2,

∑
i

m/2∑
k=1

km−k(npi(1− pi))
k ≤ n

n− 1

(∑
i

m/2∑
k=1

km−k(np̂i(1− p̂i))
k + ϵ

)
(1)

for every even m, where

ϵ =

√
n

2
log(1/δ2)

d∑
k=1

km−knk

(
k

n4k−1
+

3k(k − 1)(k − 2)

n3 · 22k−5

)
(2)

.

Proof. Define ψ(n, d, p̂) =
∑

i

∑d
k=1 k

m−k(np̂i(1− p̂i))
k. McDiarmind’s inequality sug-

gests that

P (ψ(n, d, p̂)− E (ψ(n, d, p̂)) ≤ −ϵ) ≤ exp

(
−2ϵ2∑n
j=1 c

2
j

)
where

sup
x′
j∈X

∣∣ψ(n, d, p̂)− ψ(n, d, p̂′)
∣∣ ≤ cj. (3)

where p̂′ is the MLE over the same sample xn, but with a different jth observation, x′j .
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First, let us find cj . We have

sup
x′
j∈X

∣∣ψ(n, d, p̂)− ψ(n, d, p̂′)
∣∣ (i)
≤ (4)

sup
p∈[0,1−1/n]

2
∣∣ d∑
k=1

km−k (np(1− p))k −
d∑

k=1

km−k (n(p+ 1/n)(1− (p+ 1/n)))k)
∣∣ =

sup
p∈[0,1−1/n]

2
∣∣ d∑
k=1

km−knk (p(1− p))k − ((p+ 1/n)(1− (p+ 1/n)))k)
∣∣ (ii)≤

2
d∑

k=1

km−knk

(
k

n · 4k−1
+

3k(k − 1)(k − 2)

n3 · 22k−5

)
where

(i) Changing a single observation effects only two symbols (for example, p̂l and p̂t),
where the change is ±1/n.

(ii) Please refer to Appendix A below.

Next, we have

E(ψ(n, d, p̂)) ≥
∑
i

d∑
k=1

km−knk (E(p̂i(1− p̂i)))
k =

∑
i

d∑
k=1

km−knk

((
1− 1

n

)
pi(1− pi)

)k

≥

(
1− 1

n

)∑
i

d∑
k=1

km−k(npi(1− pi))
k (5)

where the first inequality follows from Jensen Inequality and the equality that follows
is due to E(p̂i(1 − p̂i)) = p(1 − p)(1 − 1/n). Going back to McDiarmind’s inequality,
we have

P (Eψ(n, d, p̂) ≥ ψ(n, d, p̂) + ϵ) ≤ exp

(
−2ϵ2

nc2j

)
(6)

In word, the probability that the random variable Z = ψ(n, d, p̂) is smaller than a
constant C = E(ψ(n, d, p̂))− ϵ is not greater that ν = exp

(
−2ϵ2/

∑n
j=1 c

2
j

)
. Therefore,

it necessarily means that the probability that Z is smaller than a constant smaller than
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C, is also not greater than ν. Hence, plugging (5) we obtain

P
((

1− 1

n

)
ψ(n, d, p) ≥ ψ(n, d, p̂) + ϵ

)
≤ exp

(
−2ϵ2∑

j c
2
j

)
Setting the right hand side to equal δ2 we get

ϵ =

√
n

2
log(1/δ2)

d∑
k=1

km−knk

(
k

n · 4k−1
+

3k(k − 1)(k − 2)

n3 · 22k−5

)
(7)

and with probability 1− δ2,

∑
i

d∑
k=1

km−k(npi(1− pi))
k ≤ n

n− 1

(∑
i

d∑
k=1

km−k(np̂i(1− p̂i))
k + ϵ

)
(8)

Finally, we apply the union bound with δ = δ1 and Proposition I.1 to obtain the stated
result.

II. A PROOF FOR COROLLARY 4

We prove the Corollary with two propositions.

Proposition II.1. Let δ1 > 0. Then, with probability 1− δ1,

sup
i∈X

|pi − p̂i(X
n)| ≤ m

2n

(
1

δ1

)1/m
∑

i

m/2∑
k=1

(npi(1− pi))
k

1/m

(9)

for every even m > 0.

Proof. First, we have

E
(
sup
i

|pi − p̂i(X
n)|
)m (i)

≤ 1

nm

∑
i

d∑
k=1

km−k(npi(1− pi))
k

(ii)
≤

(
d

m

)m∑
i

d∑
k=1

(npi(1− pi))
k

where d = n/2 and
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(i) follows from (15) in the main text .
(ii) follows from km−k ≤ dm for every k ∈ {1, ..., d}.

Applying Markov’s inequality we obtain

P
(
sup
i

|pi − p̂i(X
n)| ≥ a

)
≤ 1

am
E
(
sup
i

|pi − p̂i(X
n)|
)m

≤ (10)

1

am

(
d

n

)m∑
i

d∑
k=1

(npi(1− pi))
k.

Setting the right hand side to equal δ1 yields

a =

(
1

δ1

(
d

n

)m∑
i

d∑
k=1

(npi(1− pi))
k

)1/m

=
m

2n

 1

δ1

∑
i

m/2∑
k=1

(npi(1− pi))
k

1/m

.

Proposition II.2. Let δ2 > 0. Then, with probability 1− δ2,

∑
i

d∑
k=1

(npi(1− pi))
k ≤ (11)

n

n− 1

(∑
i

d∑
k=1

(np̂i(1− p̂i))
k + d

√
1

2
log(1/δ2)

(
2nd−1/2 + 48nd−5/2

))
for every even m.

Proof. McDiarmind’s inequality suggests that

P

(∑
i

d∑
k=1

(np̂i(1− p̂i))
k − E

(∑
i

d∑
k=1

(np̂i(1− p̂i))
k

)
≤ −ϵ

)
≤ exp

(
−2ϵ2∑n
j=1 c

2
j

)
where

sup
x′
j∈X

∣∣∑
i

d∑
k=1

(np̂i(1− p̂i))
k −

∑
i

d∑
k=1

(np̂′i(1− p̂′i))
k
)
∣∣ ≤ cj. (12)
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First, let us find cj . We have

sup
x′
j∈X

∣∣∑
i

d∑
k=1

(np̂i(1− p̂i))
k −

∑
i

d∑
k=1

(np̂′i(1− p̂′i))
k
)
∣∣ (i)
≤ (13)

2 sup
p∈[0,1−1/n]

∣∣ d∑
k=1

(np(1− p))k −
d∑

k=1

(n(p+ 1/n)(1− (p+ 1/n)))k)
∣∣ =

2 sup
p∈[0,1−1/n]

∣∣ d∑
k=1

nk (p(1− p))k − ((p+ 1/n)(1− (p+ 1/n)))k)
∣∣ ≤

2
d∑

k=1

nk sup
p∈[0,1−1/n]

∣∣ (p(1− p))k − ((p+ 1/n)(1− (p+ 1/n)))k)
∣∣ (ii)=

2
d∑

k=1

nk

(
k

n · 4k−1
+

3k(k − 1)(k − 2)

n3 · 22k−5

)
≤

nd−1

d∑
k=1

(
2k

4k−1
+

3k(k − 1)(k − 2)

n2 · 22k−4

)
(iii)
≤ 2dnd−1 + 48dnd−3

where

(i) Changing a single observation effects only two symbols (for example, p̂l and p̂t),
where the change is ±1/n.

(ii) Please refer to Appendix A.
(iii) Follows from

∑d
k=1

k
4k−1 = 4

∑d
k=1

k
4k

≤ d and

d∑
k=1

k(k − 1)(k − 2)

4k−2
≤

d∑
k=1

k3

4k−2
≤ d max

k∈[1,d]

k3

4k−2
≤ 16

2 exp(−3)

log(4)
≤ 16 (14)

where the maximum is obtain for k∗ = 3/ log(4).

next, we have

E
(∑

i

d∑
k=1

(np̂i(1− p̂i))
k

)
≥
∑
i

d∑
k=1

(E(np̂i(1− p̂i)))
k = (15)

∑
i

d∑
k=1

nk

((
1− 1

n

)
pi(1− pi)

)k

≥
(
1− 1

n

)∑
i

d∑
k=1

(npi(1− pi))
k
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Going back to McDiarmind’s inequality, we have

P

(
E

(∑
i

d∑
k=1

(np̂i(1− p̂i))
k

)
≥
∑
i

d∑
k=1

(np̂i(1− p̂i))
k + ϵ

)
≤ exp

(
−2ϵ2∑n
j=1 c

2
j

)
(16)

Plugging (15) we obtain

P

((
1− 1

n

)∑
i

d∑
k=1

(npi(1− pi))
k ≥

∑
i

d∑
k=1

(np̂i(1− p̂i))
k + ϵ

)
≤ exp

(
−2ϵ2∑

j c
2
j

)
Setting the right hand side to equal δ2 we get

ϵ =

√
n

2
log(1/δ2)

(
2dnd−1 + 48dnd−3

)
and with probability 1− δ2,

∑
i

d∑
k=1

(npi(1− pi))
k ≤ (17)

n

n− 1

(∑
i

d∑
k=1

(np̂i(1− p̂i))
k + d

√
1

2
log(1/δ2)

(
2nd−1/2 + 48nd−5/2

))

Finally, we apply the union bound to Propositions II.1 and II.2 to obtain

sup
i∈X

|pi − p̂i(X
n)| ≤

m

2n

(
1

δ1

n

n− 1

(∑
i

d∑
k=1

(np̂i(1− p̂i))
k + d

√
1

2
log(1/δ2)

(
2nd−1/2 + 48nd−5/2

)))1/m

≤

m

2δ
1/m
1

1

n

(
n

n− 1

)1/m
∑

i

m/2∑
k=1

(np̂i(1− p̂i))
k

1/m

+

m

2δ
1/m
1

1

n

(
n

n− 1

)1/m

(m/2)1/m
(
1

2
log

(
1

δ2

))1/m (
2n

1
2
− 1

2m + 48n
1
2
− 5

2m

)
with probability 1−δ1−δ2. Define g(m, δ1) = m/δ

1/m
1 . Further, it is immediate to show
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that (m/2)1/m ≤
√

exp(1/ exp(1)). Hence, with probability 1− δ1 − δ2,

sup
i∈X

|pi − p̂i(X
n)| ≤g(m, δ1)

n

∑
i

m/2∑
k=1

(np̂i(1− p̂i))
k

1/m

+

bg(m, δ1)(log(1/δ2))
1/2m

(
n− 1

2(1+
1
m) + 24n− 1

2(1+
5
m)
)

for every even m, where b =
√

2 exp(1/ exp(1)). Finally, we would like to choose m
which minimizes g(m, δ1). We show in Appendix B that infm g(m, δ1) = exp(1) log(1/δ1),
where and the infimum is obtained for a choice of m∗ = log(1/δ1).

III. A PROOF OF THEOREM 5

Let us first introduce some auxiliary results and background

A. Auxiliary Results

Lemma III.1 (contained in the proof of Lemma 10, [1]). Let Yi∈I⊆N be random variables
such that, for each i ∈ I , there are vi > 0 and ai ≥ 0 satisfying

P (Yi ≥ ε) ≤ exp

(
− ε2

2(vi + aiε)

)
, ε ≥ 0. (18)

Put

v∗ := supi∈I vi, V ∗ := supi∈I vi log(i+ 1), a∗ := supi∈I ai, A∗ := supi∈I ai log(i+ 1). (19)

Then

P

(
sup
i∈I

Yi ≥ 2

√
V ∗ + v∗ log

1

δ
+ 4A∗ + 4a∗ log

1

δ

)
≤ δ.

Remark III.1. When considering the random variable Z = supi∈N |p̂i − pi|, there is no
loss of generality in assuming that pi ≤ 1/2, i ∈ N. Indeed, |Yi| = |p̂i−pi| is distributed
as |n−1 Bin(n, pi)− pi|, and the latter distribution is invariant under the transformation
pi 7→ 1− pi.

Lemma III.2. For any distribution pi∈N,

V (p) ≤ ϕ(v∗(p)).
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Proof. (This elegant proof idea is due to Václav Voráček.) There is no loss of generality
in assuming p = p↓. The claim then amounts to

sup
i∈N

vi log(i+ 1) ≤ v∗ log
1

v∗
.

The monotonicity of the pi implies pi ≤ (p1 + . . . + pi)/i ≤ 1/i. Now x ≤ 1/i =⇒
x(1−x) ≤ 1/(i+1) for i ∈ N, and hence vi ≤ 1/(i+1). Thus, vi log(i+1) ≤ vi log

1
vi

.
Finally, since x log(1/x) is increasing on [0, 1/4], which is the range of the vi, we have
supi∈N vi log

1
vi
≤ v∗ log 1

v∗
.

Remark III.2. There is no reverse inequality of the form ϕ(v∗(p)) ≤ F (V ∗(p)), for any
fixed F : R+ → R+. This can be seen by considering p supported on [k], with p1 =

log(k)/k and the remaining masses uniform. Then V ∗(p) ≈ log(k)/k while ϕ(v∗(p)) ≈
log(k) log(k/ log k)/k.

Proposition III.1. Let n ≥ 10 and β = log(n). Then,

f(n) =
β−βn2

(
n−β
n

)β−n

2β − 2
≤ 81

2
.

Proof. To prove the above, we show that f(n) is decreasing for n > 200. This means
that the maximum of f(n) may be numerically evaluated in the range n ∈ {10, ..., 200}.
Finally, we verify that the maximum of f(n) is attained for n = 33, and is bounded
from above by 81/2 as desired. It remains to verify that f(n) is decreasing for n > 200.
Since f(n) is non-negative, it is enough to show that g(n) = log f(n) is decreasing.
Denote

g(n) = −β log β + 2 log n+ (n− β) log(n− β) + (n− β) log n− log(2β − 2). (20)
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Taking the derivative of g(n) we have,

g′(n) = (21)

− 1

n
(log β + 1) +

2

n
+

(
1− 1

n

)
(− log(n− β)− 1 + log n) +

n− β

n
− 1

n

2β log 2

2β − 2
=

1

n

(
(n− 1) log

n

n− β
− log β − β + 2− 2β log 2

2β − 2

)
≤

1

n

(
n log

n

n− β
− log β − β + 2− log 2

)
≤ 1

n

(
nβ

n− β
− log β − β + 2− log 2

)
=

1

n

(
β2

n− β
− log β + 2− log 2

)
,

where the first inequality follows from log(n/(n− β)) ≥ 1 and 2β/(2β − 2) ≥ 1, while
the second inequality is due to Bernoulli’s inequality, (n/(n−β))n ≤ exp(nβ/(n−β)).
Finally, it is easy to show that β2/(n − β) is decreasing for n ≥ 10. This means that
β2/(n− β) ≤ (log 10)2/(10− log(10)) and g′(n) < 0 for n > 200.

Lemma III.3 (generalized Fano method [2], Lemma 3). For r ≥ 2, let Mr be a
collection of r probability measures ν1, ν2, ..., νr with some parameter of interest θ(ν)
taking values in pseudo-metric space (Θ, ρ) such that for all j ̸= k, we have

ρ(θ(νj), θ(νk)) ≥ α

and
D(νj ∥ νk) ≤ β.

Then
inf
θ̂
max
j∈[d]

EZ∼µj
ρ(θ̂(Z), θ(νj)) ≥

α

2

(
1−

(
β + log 2

log r

))
,

where the infimum is over all estimators θ̂ : Z 7→ Θ.

Proposition III.2. Let p and q be two distributions with support size n. Define p by

p1 =
log n

2n log log n
, pi =

1− p1
n− 1

, i > 1,

and q by q2 = p1, and qi = p2 for i ̸= 2. Then,
(i) ∥p− q∥∞ ≥ c logn

n log logn
for some c > 0 and all n sufficiently large.
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(ii) limn→∞
n

logn
D(p||q) = 1

2

Proof. For the first part, it is enough to show that

|p1 − p2| ≥ c log(n)/n log log n

for some c > 0 and sufficiently large n. First, we show that p1 ≥ p2 for n ≥ (log n)2.
That is,

p1 −
1− p1
n− 1

=
np1 − 1

n− 1
> 0 (22)

for np1 > 1. Next, fix 0 < c ≤ 1/2. We have,

|p1 − p2| −
c log(n)

n log log n
=
ap1 − 1

n− 1
− c log n

n log log n
= (23)

1

n− 1

(
log n

2 log log n
− 1− n− 1

n

c log n

log log n

)
=

1

(n− 1)2 log log n

(
log n

(
1− n− 1

n
2c

)
− 2 log log n

)
> 0

where the last inequality holds for c(n−1)/n < 1/2 and sufficiently large n, as desired.
We now proceed to the second part of the proof.

n

log n
D(p||q) = n

log n

(
p1 log

p1
q1

+ p2 log
p2
q2

)
=

n

log n
(p1 − p2) log

p1
p2
. (24)

First, we have

n

log n
(p1 − p2) =

n

log n

(
p1 −

1− p1
n− 1

)
=

n

log n

(
np1 − 1

n− 1

)
= (25)

n

log n

log n/2n log log n− 1

n− 1
=

n

n− 1

(
1

2 log log n
− 1

log n

)
.

Next,

log
p1
p2

= log(n− 1) + log
p1

1− p1
= log(n− 1) + log

log n

2n log log n− log n
= (26)

log(n− 1) + log log n− 2 log(2n log log n− log n).
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Putting it all together we obtain

n

log n
D(p||q) = (27)

n

n− 1

(
1

2 log log n
− 1

log n

)
(log(n− 1) + log log n− 2 log(2n log log n− log n)) =

n

n− 1

(
log(n− 1)

2 log log n
− log(n− 1)

log n
+

1

2
− log log n

log n
−

log(2n log log n− log n)

2 log log n
+

log(2n log log n− log n)

log n

)
=

n

n− 1

(
1

2
+

log(n− 1)− log(2n log log n− log n)

2 log log n
+

log(2n log log n− log n)− log(n− 1)

log n
− log log n

log n

)
.

It is straightforward to show that the last three terms in the parenthesis above converge
to zero for sufficiently large n, which leads to the stated result.

Lemma III.4 ([3]). When estimating a single Bernoulli parameter in the range [0, p0],
Θ(p0ε

−2 log(1/δ)) draws are both necessary and sufficient to achieve additive accuracy
ε with probability at least 1− δ.

B. Bernstein inequalities

Background: Let Y ∼ Bin(n, θ) be a Binomial random variable and let θ̂ = Y/n be the
its MLE.

• Classic Bernstein [4]:

P
(
θ̂ − θ ≥ ε

)
≤ exp

(
− nε2

2(θ(1− θ) + ε/3

)
(28)

with an analogous bound for the left tail. This implies:

|θ − θ̂| ≤
√

2θ(1− θ)

n
log

2

δ
+

2

3n
log

2

δ
. (29)

• Empirical Bernstein [5, Lemma 5]:

|θ − θ̂| ≤

√
5θ̂(1− θ̂)

n
log

2

δ
+

5

n
log

2

δ
. (30)
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We are now ready to present the proof of Theorem 5.

C. Proof of Theorem 5

Theorem 5. Let p = pi∈N be a distribution over N and put v∗ = v∗(p), V ∗ = V (p). For
n ≥ 81 and δ ∈ (0, 1), we have that

∥p− p̂∥∞ ≤2

√
V ∗

n
+
v∗

n
log

2

δ
+

4

3n
log

2(n+ 1)

δ
+

log n

n
≤ (31)

2

√
ϕ(v∗)

n
+
v∗

n
log

2

δ
+

4

3n
log

2(n+ 1)

δ
+

log n

n
; (32)

∥p− p̂∥∞ ≤ 2

√
v∗ log(n+ 1)

n
+
v∗

n
log

2

δ
+

4

3n
log

2(n+ 1)

δ
+

log n

n
(33)

holds with probability at least 1− δ − 81/n.

Proof. We assume without loss of generality that p is sorted in descending order: p1 ≥
p2 ≥ . . . and further, as per Remark III.1, that p1 ≤ 1/2. The estimate p̂i is just the
MLE based on n iid draws.

Our strategy for analyzing supi∈N |p̂i − pi| will be to break up p into the “heavy”
masses, where we apply a maximal Bernstein-type inequality, and the “light” masses,
where we apply a multiplicative Chernoff-type bound.

We define the “heavy” masses as those with pi ≥ 1/n. Denote by I ⊂ N the set of
corresponding indices and note that |I| ≤ n. For i ∈ I , put Yi = p̂i − pi. Then (28)
implies that each Yi satisfies (18) with vi = pi(1 − pi)/n and ai = 1/(3n); trivially,
maxi∈I ai log(i + 1) = log(n + 1)/(3n). Invoking Lemma III.1 twice (once for Yi and
again for −Yi) together with the union bound,

we have, with probability ≥ 1− δ,

max
i∈I

|p̂i − pi| ≤ 2

√
V ∗

n
+
v∗

n
log

2

δ
+

4 log(n+ 1)

3n
+

4

3n
log

2

δ
. (34)

Next, we analyze the light masses. Our first “segment” consisted of the pi ∈ [n−1, 1];
these were the heavy masses. We take the next segment to consist of pi ∈ [(2n)−1, n−1],
of which there are at most 2n atoms. The segment after that will be in the range
[(4n)−1, (2n)−1], and, in general, the kth segment is in the range [(2kn)−1, (2k−1n)−1],
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and will contain at most 2kn atoms. To the kth segment, we apply the Chernoff bound
P(p̂ ≥ p + ε) ≤ exp(−nD(p + ε||p)), where p = (2kn)−1 and ε = εk = 2kpβ − p,
for some β to be specified below. [Note that D(αp||p) is monotonically increasing in p
for fixed α, so we are justified in taking the left endpoint.] For this choice, in the kth
segment we have

D(p+ ε||p) = D(2kpβ||p) = D

(
β

n

∥∥∥ 1

2kn

)

=
(n− β) log

(
2k(n−β)
2kn−1

)
+ β log

(
2kβ
)

n

≥
(n− β) log

(
n−β
n

)
+ β log

(
2kβ
)

n
,

since neglecting the −1/2k additive term in the denominator decreases the expression.
Let E be the event that any of the pis in any of the segments k = 1, 2, . . . has a
corresponding p̂i that exceeds β/n. Then

P(E) ≤
∞∑
k=1

2kn exp

(
−(n− β) log

(
n− β

n

)
− β log

(
2kβ
))

=
2β−βn

(
n−β
n

)β−n

2β − 2
.

For the choice β = log n, we have

P(E) ≤
2β−βn

(
n−β
n

)β−n

2β − 2
≤ 81

n
, n ≥ 10, (35)

which is proved in Proposition III.1. Now E is the event that supi:pi<1/n(p̂i − pi) ≥
log(n)/n. Since pi < 1/n, there is no need to consider the left-tail deviation at this
scale, as all of the probabilities will be zero. Combining (34) with (35) yields (31).
Since Lemma III.2 implies that V ∗ ≤ ϕ(v∗), (32) follows from (31). Finally, (33)
follows from (31) via the obvious relation V ∗ ≤ log(n+ 1)v∗.

IV. A PROOF FOR THEOREM 6

We begin with an elementary observation: for N ∈ N and a, b ∈ [0, 1]N , we have∣∣∣∣max
i∈[N ]

ai(1− ai)−max
i∈[N ]

bi(1− bi)

∣∣∣∣ ≤ max
i∈[N ]

|ai − bi| ,
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and this also carries over to a, b ∈ [0, 1]N. Let us denote v∗ := supi∈N pi(1 − pi) and
v̂∗ := supi∈N p̂i(1− p̂i).

Together with (33), this implies

|v∗ − v̂∗| ≤ ∥p− p̂∥∞ ≤ a+ b
√
v∗

where

a =
4

3n
log

2(n+ 1)

δ
+

log n

n
,

b = 2

√
log(n+ 1)

n
+

1

n
log

2

δ
.

Following the proof of Lemma 5 in [5],

|v∗ − v̂∗| ≤ a+ b
√
v∗

≤ a+ b
√
v̂∗ + |v∗ − v̂∗|

≤ a+ b
√
v̂∗ + b

√
|v∗ − v̂∗|,

where we used v∗ ≤ v̂∗ + |v∗ − v̂∗| and
√
x+ y ≤

√
x+

√
y.

Now we have an expression of the form

A ≤ B
√
A+ C,

where A = |v∗ − v̂∗|, B = b, C = a+ b
√
v̂∗, which implies A ≤ B2 +B

√
C + C, or

|v∗ − v̂∗| ≤ b2 + a+ b
√
v̂∗ + b

√
a+ b

√
v̂∗.

Using
√
x+ y ≤

√
x+

√
y and

√
xy ≤ (x+ y)/2,

|v∗ − v̂∗| ≤ b2 + a+ b
√
v̂∗ + b

√
a+ b

√
b
√
v̂∗

≤ b2 + a+ b
√
v̂∗ + b

√
a+ b(b+

√
v̂∗)/2

= a+ 3b2/2 + b
√
a+ 3b

√
v̂∗/2.

We still have

a+ b
√
v∗ ≤ a+ 3b2/2 + b

√
a+ 3b

√
v̂∗/2,
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whence, with probability 1− δ,

∥p− p̂∥∞ ≤ a+ 3b2/2 + b
√
a+ 3b

√
v̂∗/2. (36)

V. A PROOF FOR THEOREM 7

We begin with the following proposition.

Proposition V.1. Assume there exists Vδ(Xn) such that

P
(
|pj − p̂j| ≥ Vδ(X

n)|pj = p[1]
)
≤ δ. (37)

Then,

E(Vδ(Xn)) ≥ zδ/2

√
p[1](1− p[1])

n
+O

(
1

n

)
.

Proof. Assume there exists Vδ(Xn) that satisfies (37) and

E(Vδ(Xn)) < zδ/2

√
p[1](1− p[1])

n
+O

(
1

n

)
.

From (37), we have that

P
(
|pj − p̂j| ≥ Uδ(X

n)|pj = p[1]
)
= P

(
|p[1] − p̂j| ≥ Uδ(X

n)|pj = p[1]
)
≤ δ. (38)

Now, consider Y ∼ Bin(n, p[1]). Let Y n be a sample of n independent observations.
Notice we can always extend the Binomial case to a multinomial setup with parameters
p, over any alphabet size ||p||0. That is, given a sample Y n, we may replace every Y = 0

(or Y = 1) with a sample from a multinomial distribution over an alphabet size ||p||0−1.
Further, we may focus on samples for which p[1] is the most likely event in the alphabet,
and construct a CI for p[1] following (38). This means that we found a CI for p[1] with
an expected length that is shorter than the CP CI, which contradicts its optimality.

Now, assume there exists Uδ(X
n) that satisfies

P (|pj − p̂j| ≥ Uδ(X
n)) ≤ δ. (39)
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and

E(Uδ(X
n)) < zδ/2

√
p[1](1− p[1])

n
+O

(
1

n

)
. (40)

For simplicity of notation, denote v = argmaxi pi as the symbol with the greatest
probability in the alphabet. That is, pv = p[1]. We implicitly assume that v is unique,
although the proof holds in case of several maxima as well. We have that

P (|pj − p̂j| ≥ Uδ(X
n)) = (41)∑

u∈X

P (|pj − p̂j| ≥ Uδ(X
n)|j = u)P(j = u) =

P
(
|p[1] − p̂j| ≥ Uδ(X

n)|j = v
)
P(j = v)+∑

u̸=v

P (|pj − p̂j| ≥ Uδ(X
n)|j = u)P(j = u).

Proposition V.1 together with assumption (40) suggest that

P
(
|p[1] − p̂j| ≥ Uδ(X

n)|j = v
)
> δ.

On the other hand, it is well-known that p̂[1] → p[1] for sufficiently large n [6], [7], [8].
This means that P(j = u) → 1 and (41) is bounded from below by δ, for sufficiently
large n. This contradicts (38) as desired.

APPENDIX A

We show that

sup
p∈[0,1−1/n]

∣∣ (p(1− p))k − ((p+ 1/n)(1− (p+ 1/n)))k)
∣∣ ≤ k

n · 4k−1
+

3k(k − 1)(k − 2)

n3 · 22k−5

Let 0 ≤ p ≤ 1/2 − 1/n. Denote fk(p) = ((p(1− p))k. Applying Taylor series to
fk(p+ 1/n) around fk(p) yields

fk

(
p+

1

n

)
= fk(p) +

1

n
f ′
k(p) + r(p)
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where r(p) = 1
3!

1
n3f

′′′(c) is the residual and c ∈ [p, p+ 1/n] [9]. We have

f ′
k(p) = k (p(1− p))k−1 (1− 2p) ≤ k (p(1− p))k−1 (42)

f ′′′
k (p) = k(k − 1)(k − 2)pk−3(1− p)k−3(1− 2p)3 − 6k(k − 1)pk−2(1− p)k−2(1− 2p) ≤

k(k − 1)pk−3(1− p)k−3 ((k − 2) + 6p(1− p)) .

Hence,

sup
p∈[0,1/2−1/n]

∣∣ (p(1− p))k − ((p+ 1/n)(1− (p+ 1/n)))k)
∣∣ = (43)

sup
p∈[0,1/2−1/n]

∣∣− 1

n
f ′
k(p)−

1

3!

1

n3
f ′′′(c)

∣∣ ≤ sup
p∈[0,1/2−1/n]

1

n

∣∣f ′
k(p)

∣∣+ 1

3!

1

n3

∣∣f ′′′(c)
∣∣ (i)
≤

sup
p∈[0,1/2−1/n]

k

n
(p(1− p))k−1 + k(k − 1)pk−3(1− p)k−3 ((k − 2) + 6p(1− p))

(ii)
≤

k

n · 4k−1
+

3k(k − 1)(k − 2)

n3 · 22k−5

where

(i) follows from (42).
(ii) follows from the concavity of (p(1− p))k for k ≥ 1.

APPENDIX B

We study minmm/a
1/m for some positive a. This problem is equivalent to

min
m

log(m)− 1

m
log(a).

Taking its derivative with respect to m and setting it to zero yields

d

dm
log(m)− 1

m
log(a) =

1

m
+

1

m2
log(a) = 0.

Hence, m∗ = log(1/a). Therefore,

min
m

m/a1/m =exp(log(m∗)− (1/m∗) log(a)) = exp(1) log(1/a). (44)
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APPENDIX C

We study

min
m∈R+

(√
m/2

δ1/m

)
exp

(
−1

2
+

1

m

)
(45)

This problem is equivalent to

min
d∈R+

1

2
log(d) +

1

2d
log

(
1

δ

)
− 1

2
+

1

2d
(46)

where d = m/2. Taking its derivative with respect to d and setting it to zero yields

1

2d
− 1

2d2

(
log

(
1

δ

)
+ 1

)
= 0.

Hence, d∗ = log(1/δ) + 1. Therefore,

min
d∈R+

1

2
log(d) +

1

2d
log

(
1

δ

)
− 1

2
+

1

2d
=

1

2
log(log(1/δ) + 1) (47)

and

min
m∈R+

(√
m/2

δ1/m

)
exp

(
−1

2
+

1

m

)
=

√
log

(
1

δ

)
+ 1. (48)

APPENDIX D

Proposition V.2. Let pi∈N be a probability distribution over N. Then,

p[1] = max
i∈N

pi(1− pi) (49)

where p[1] = maxi∈N pi is the largest element in p.

Proof. Let us first consider the case where pi ≤ 1/2 for all i ∈ N. Then (49) follows
directly from the montonicity of pi(1 − pi) for pi ∈ [0, 1/2]. Next, assume there exists
a single pj > 1/2. Specifically, pj = 1/2 + a for some positive a. Then, the remaining
pi’s are necessarily smaller than 1/2. Further, the maximum of pi(1 − pi) over i ̸= j

is obtained for pi = 1/2 − a, from the same monotonicity reason. This means that
maxi ̸=j pi(1 − pi) = (1/2 − a)(1 − (1/2 − a)) = (1/2 + a)(1 − (1/2 + a)) where
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the second equality follows from the symmetry of pi(1 − pi) around pi = 1/2, which
concludes the proof.
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