Supplemental Material for ISF Proposal: Large Alphabet Inference

I. A PROOF FOR THEOREM 3

We begin with the following proposition.

Proposition I.1. Let $\delta_2 > 0$. Then, with probability $1 - \delta_2$,

$$\sum_{i} \sum_{k=1}^{m/2} k^{m-k} (np_i(1-p_i))^k \le \frac{n}{n-1} \left(\sum_{i} \sum_{k=1}^{m/2} k^{m-k} (n\hat{p}_i(1-\hat{p}_i))^k + \epsilon \right)$$
(1)

for every even m, where

$$\epsilon = \sqrt{\frac{n}{2}\log(1/\delta_2)} \sum_{k=1}^{d} k^{m-k} n^k \left(\frac{k}{n4^{k-1}} + \frac{3k(k-1)(k-2)}{n^3 \cdot 2^{2k-5}}\right)$$
(2)

Proof. Define $\psi(n, d, \hat{p}) = \sum_{i} \sum_{k=1}^{d} k^{m-k} (n \hat{p}_i (1 - \hat{p}_i))^k$. McDiarmind's inequality suggests that

$$\mathbf{P}\left(\psi(n,d,\hat{p}) - \mathbb{E}\left(\psi(n,d,\hat{p})\right) \le -\epsilon\right) \le \exp\left(\frac{-2\epsilon^2}{\sum_{j=1}^n c_j^2}\right)$$

where

$$\sup_{x'_j \in \mathcal{X}} \left| \psi(n, d, \hat{p}) - \psi(n, d, \hat{p}') \right| \le c_j.$$
(3)

where \hat{p}' is the MLE over the same sample x^n , but with a different j^{th} observation, x'_j .

First, let us find c_j . We have

$$\begin{split} \sup_{x'_{j} \in \mathcal{X}} \left| \psi(n, d, \hat{p}) - \psi(n, d, \hat{p}') \right| &\stackrel{(i)}{\leq} \end{split} \tag{4} \\ \sup_{p \in [0, 1 - 1/n]} 2 \left| \sum_{k=1}^{d} k^{m-k} \left(np(1-p) \right)^{k} - \sum_{k=1}^{d} k^{m-k} \left(n(p+1/n)(1 - (p+1/n)) \right)^{k} \right) \right| &= \\ \sup_{p \in [0, 1 - 1/n]} 2 \left| \sum_{k=1}^{d} k^{m-k} n^{k} \left(p(1-p) \right)^{k} - \left((p+1/n)(1 - (p+1/n)) \right)^{k} \right) \right| \stackrel{(ii)}{\leq} \\ 2 \sum_{k=1}^{d} k^{m-k} n^{k} \left(\frac{k}{n \cdot 4^{k-1}} + \frac{3k(k-1)(k-2)}{n^{3} \cdot 2^{2k-5}} \right) \end{split}$$

where

- (i) Changing a single observation effects only two symbols (for example, \hat{p}_l and \hat{p}_t), where the change is $\pm 1/n$.
- (ii) Please refer to Appendix A below.

Next, we have

$$\mathbb{E}(\psi(n,d,\hat{p})) \geq \sum_{i} \sum_{k=1}^{d} k^{m-k} n^{k} \left(\mathbb{E}(\hat{p}_{i}(1-\hat{p}_{i}))\right)^{k} = \sum_{i} \sum_{k=1}^{d} k^{m-k} n^{k} \left(\left(1-\frac{1}{n}\right) p_{i}(1-p_{i})\right)^{k} \geq \left(1-\frac{1}{n}\right) \sum_{i} \sum_{k=1}^{d} k^{m-k} (np_{i}(1-p_{i}))^{k}$$
(5)

where the first inequality follows from Jensen Inequality and the equality that follows is due to $\mathbb{E}(\hat{p}_i(1-\hat{p}_i)) = p(1-p)(1-1/n)$. Going back to McDiarmind's inequality, we have

$$\mathbb{P}\left(\mathbb{E}\psi(n,d,\hat{p}) \ge \psi(n,d,\hat{p}) + \epsilon\right) \le \exp\left(\frac{-2\epsilon^2}{nc_j^2}\right)$$
(6)

In word, the probability that the random variable $Z = \psi(n, d, \hat{p})$ is smaller than a constant $C = \mathbb{E}(\psi(n, d, \hat{p})) - \epsilon$ is not greater that $\nu = \exp\left(-2\epsilon^2/\sum_{j=1}^n c_j^2\right)$. Therefore, it necessarily means that the probability that Z is smaller than a constant smaller than

C, is also not greater than ν . Hence, plugging (5) we obtain

$$\mathbb{P}\left(\left(1-\frac{1}{n}\right)\psi(n,d,p) \ge \psi(n,d,\hat{p}) + \epsilon\right) \le \exp\left(\frac{-2\epsilon^2}{\sum_j c_j^2}\right)$$

Setting the right hand side to equal δ_2 we get

$$\epsilon = \sqrt{\frac{n}{2}\log(1/\delta_2)} \sum_{k=1}^{d} k^{m-k} n^k \left(\frac{k}{n \cdot 4^{k-1}} + \frac{3k(k-1)(k-2)}{n^3 \cdot 2^{2k-5}}\right)$$
(7)

and with probability $1 - \delta_2$,

$$\sum_{i} \sum_{k=1}^{d} k^{m-k} (np_i(1-p_i))^k \le \frac{n}{n-1} \left(\sum_{i} \sum_{k=1}^{d} k^{m-k} (n\hat{p}_i(1-\hat{p}_i))^k + \epsilon \right)$$
(8)

Finally, we apply the union bound with $\delta = \delta_1$ and Proposition I.1 to obtain the stated result.

II. A PROOF FOR COROLLARY 4

We prove the Corollary with two propositions.

Proposition II.1. Let $\delta_1 > 0$. Then, with probability $1 - \delta_1$,

$$\sup_{i \in \mathcal{X}} |p_i - \hat{p}_i(X^n)| \le \frac{m}{2n} \left(\frac{1}{\delta_1}\right)^{1/m} \left(\sum_i \sum_{k=1}^{m/2} (np_i(1-p_i))^k\right)^{1/m}$$
(9)

for every even m > 0.

Proof. First, we have

$$\mathbb{E}\left(\sup_{i}|p_{i}-\hat{p}_{i}(X^{n})|\right)^{m} \stackrel{(i)}{\leq} \frac{1}{n^{m}} \sum_{i} \sum_{k=1}^{d} k^{m-k} (np_{i}(1-p_{i}))^{k} \stackrel{(ii)}{\leq} \left(\frac{d}{m}\right)^{m} \sum_{i} \sum_{k=1}^{d} (np_{i}(1-p_{i}))^{k}$$

where d = n/2 and

- (i) follows from (15) in the main text .
- (ii) follows from $k^{m-k} \leq d^m$ for every $k \in \{1, ..., d\}$.

Applying Markov's inequality we obtain

$$\mathbb{P}\left(\sup_{i}|p_{i}-\hat{p}_{i}(X^{n})| \geq a\right) \leq \frac{1}{a^{m}}\mathbb{E}\left(\sup_{i}|p_{i}-\hat{p}_{i}(X^{n})|\right)^{m} \leq \frac{1}{a^{m}}\left(\frac{d}{n}\right)^{m}\sum_{i}\sum_{k=1}^{d}(np_{i}(1-p_{i}))^{k}.$$
(10)

Setting the right hand side to equal δ_1 yields

$$a = \left(\frac{1}{\delta_1} \left(\frac{d}{n}\right)^m \sum_i \sum_{k=1}^d (np_i(1-p_i))^k \right)^{1/m} = \frac{m}{2n} \left(\frac{1}{\delta_1} \sum_i \sum_{k=1}^{m/2} (np_i(1-p_i))^k \right)^{1/m}.$$

Proposition II.2. Let $\delta_2 > 0$. Then, with probability $1 - \delta_2$,

$$\sum_{i} \sum_{k=1}^{d} (np_{i}(1-p_{i}))^{k} \leq$$

$$\frac{n}{n-1} \left(\sum_{i} \sum_{k=1}^{d} (n\hat{p}_{i}(1-\hat{p}_{i}))^{k} + d\sqrt{\frac{1}{2}\log(1/\delta_{2})} \left(2n^{d-1/2} + 48n^{d-5/2} \right) \right)$$
(11)

for every even m.

Proof. McDiarmind's inequality suggests that

$$\mathbb{P}\left(\sum_{i}\sum_{k=1}^{d}(n\hat{p}_{i}(1-\hat{p}_{i}))^{k}-\mathbb{E}\left(\sum_{i}\sum_{k=1}^{d}(n\hat{p}_{i}(1-\hat{p}_{i}))^{k}\right)\leq-\epsilon\right)\leq\exp\left(\frac{-2\epsilon^{2}}{\sum_{j=1}^{n}c_{j}^{2}}\right)$$

where

$$\sup_{x'_j \in \mathcal{X}} \left| \sum_i \sum_{k=1}^d \left(n \hat{p}_i (1 - \hat{p}_i) \right)^k - \sum_i \sum_{k=1}^d \left(n \hat{p}'_i (1 - \hat{p}'_i) \right)^k \right) \right| \le c_j.$$
(12)

First, let us find c_j . We have

$$\sup_{x'_{j} \in \mathcal{X}} \left| \sum_{i} \sum_{k=1}^{d} (n\hat{p}_{i}(1-\hat{p}_{i}))^{k} - \sum_{i} \sum_{k=1}^{d} (n\hat{p}'_{i}(1-\hat{p}'_{i}))^{k}) \right| \stackrel{(i)}{\leq}$$
(13)

$$2 \sup_{p \in [0,1-1/n]} \left| \sum_{k=1}^{d} (np(1-p))^{k} - \sum_{k=1}^{d} (n(p+1/n)(1-(p+1/n)))^{k}) \right| =$$

$$2 \sup_{p \in [0,1-1/n]} \left| \sum_{k=1}^{d} n^{k} (p(1-p))^{k} - ((p+1/n)(1-(p+1/n)))^{k}) \right| \leq$$

$$2 \sum_{k=1}^{d} n^{k} \sup_{p \in [0,1-1/n]} \left| (p(1-p))^{k} - ((p+1/n)(1-(p+1/n)))^{k}) \right| \stackrel{(ii)}{=}$$

$$2 \sum_{k=1}^{d} n^{k} \left(\frac{k}{n \cdot 4^{k-1}} + \frac{3k(k-1)(k-2)}{n^{3} \cdot 2^{2k-5}} \right) \leq$$

$$n^{d-1} \sum_{k=1}^{d} \left(\frac{2k}{4^{k-1}} + \frac{3k(k-1)(k-2)}{n^{2} \cdot 2^{2k-4}} \right) \stackrel{(iii)}{\leq} 2dn^{d-1} + 48dn^{d-3}$$

where

- (i) Changing a single observation effects only two symbols (for example, \hat{p}_l and \hat{p}_t), where the change is $\pm 1/n$.
- (ii) Please refer to Appendix A.

(iii) Follows from
$$\sum_{k=1}^{d} \frac{k}{4^{k-1}} = 4 \sum_{k=1}^{d} \frac{k}{4^{k}} \le d$$
 and

$$\sum_{k=1}^{d} \frac{k(k-1)(k-2)}{4^{k-2}} \le \sum_{k=1}^{d} \frac{k^3}{4^{k-2}} \le d \max_{k \in [1,d]} \frac{k^3}{4^{k-2}} \le 16 \frac{2\exp(-3)}{\log(4)} \le 16$$
(14)

where the maximum is obtain for $k^* = 3/\log(4)$.

next, we have

$$\mathbb{E}\left(\sum_{i}\sum_{k=1}^{d} (n\hat{p}_{i}(1-\hat{p}_{i}))^{k}\right) \geq \sum_{i}\sum_{k=1}^{d} (\mathbb{E}(n\hat{p}_{i}(1-\hat{p}_{i})))^{k} = \sum_{i}\sum_{k=1}^{d} n^{k} \left(\left(1-\frac{1}{n}\right)p_{i}(1-p_{i})\right)^{k} \geq \left(1-\frac{1}{n}\right)\sum_{i}\sum_{k=1}^{d} (np_{i}(1-p_{i}))^{k}$$
(15)

Going back to McDiarmind's inequality, we have

$$\mathbb{P}\left(\mathbb{E}\left(\sum_{i}\sum_{k=1}^{d}(n\hat{p}_{i}(1-\hat{p}_{i}))^{k}\right)\geq\sum_{i}\sum_{k=1}^{d}(n\hat{p}_{i}(1-\hat{p}_{i}))^{k}+\epsilon\right)\leq\exp\left(\frac{-2\epsilon^{2}}{\sum_{j=1}^{n}c_{j}^{2}}\right)$$
(16)

Plugging (15) we obtain

$$\mathbb{P}\left(\left(1-\frac{1}{n}\right)\sum_{i}\sum_{k=1}^{d}(np_i(1-p_i))^k \ge \sum_{i}\sum_{k=1}^{d}(n\hat{p}_i(1-\hat{p}_i))^k + \epsilon\right) \le \exp\left(\frac{-2\epsilon^2}{\sum_j c_j^2}\right)$$

Setting the right hand side to equal δ_2 we get

$$\epsilon = \sqrt{\frac{n}{2}\log(1/\delta_2)} \left(2dn^{d-1} + 48dn^{d-3}\right)$$

and with probability $1 - \delta_2$,

$$\sum_{i} \sum_{k=1}^{d} (np_{i}(1-p_{i}))^{k} \leq (17)$$

$$\frac{n}{n-1} \left(\sum_{i} \sum_{k=1}^{d} (n\hat{p}_{i}(1-\hat{p}_{i}))^{k} + d\sqrt{\frac{1}{2}\log(1/\delta_{2})} \left(2n^{d-1/2} + 48n^{d-5/2} \right) \right)$$

Finally, we apply the union bound to Propositions II.1 and II.2 to obtain

$$\begin{split} \sup_{i \in \mathcal{X}} |p_i - \hat{p}_i(X^n)| &\leq \\ \frac{m}{2n} \left(\frac{1}{\delta_1} \frac{n}{n-1} \left(\sum_i \sum_{k=1}^d (n\hat{p}_i(1-\hat{p}_i))^k + d\sqrt{\frac{1}{2}\log(1/\delta_2)} \left(2n^{d-1/2} + 48n^{d-5/2} \right) \right) \right)^{1/m} &\leq \\ \frac{m}{2\delta_1^{1/m}} \frac{1}{n} \left(\frac{n}{n-1} \right)^{1/m} \left(\sum_i \sum_{k=1}^{m/2} (n\hat{p}_i(1-\hat{p}_i))^k \right)^{1/m} + \\ \frac{m}{2\delta_1^{1/m}} \frac{1}{n} \left(\frac{n}{n-1} \right)^{1/m} \left(m/2 \right)^{1/m} \left(\frac{1}{2} \log\left(\frac{1}{\delta_2}\right) \right)^{1/m} \left(2n^{\frac{1}{2} - \frac{1}{2m}} + 48n^{\frac{1}{2} - \frac{5}{2m}} \right) \end{split}$$

with probability $1 - \delta_1 - \delta_2$. Define $g(m, \delta_1) = m/\delta_1^{1/m}$. Further, it is immediate to show

that $(m/2)^{1/m} \leq \sqrt{\exp(1/\exp(1))}$. Hence, with probability $1 - \delta_1 - \delta_2$,

$$\sup_{i \in \mathcal{X}} |p_i - \hat{p}_i(X^n)| \leq \frac{g(m, \delta_1)}{n} \left(\sum_i \sum_{k=1}^{m/2} (n\hat{p}_i(1 - \hat{p}_i))^k \right)^{1/m} + bg(m, \delta_1) (\log(1/\delta_2))^{1/2m} \left(n^{-\frac{1}{2}\left(1 + \frac{1}{m}\right)} + 24n^{-\frac{1}{2}\left(1 + \frac{5}{m}\right)} \right)$$

for every even m, where $b = \sqrt{2 \exp(1/\exp(1))}$. Finally, we would like to choose m which minimizes $g(m, \delta_1)$. We show in Appendix B that $\inf_m g(m, \delta_1) = \exp(1) \log(1/\delta_1)$, where and the infimum is obtained for a choice of $m^* = \log(1/\delta_1)$.

III. A PROOF OF THEOREM 5

Let us first introduce some auxiliary results and background

A. Auxiliary Results

Lemma III.1 (contained in the proof of Lemma 10, [1]). Let $Y_{i \in I \subseteq \mathbb{N}}$ be random variables such that, for each $i \in I$, there are $v_i > 0$ and $a_i \ge 0$ satisfying

$$\mathbb{P}(Y_i \ge \varepsilon) \le \exp\left(-\frac{\varepsilon^2}{2(v_i + a_i\varepsilon)}\right), \quad \varepsilon \ge 0.$$
 (18)

Put

$$v^* := \sup_{i \in I} v_i, \quad V^* := \sup_{i \in I} v_i \log(i+1), \quad a^* := \sup_{i \in I} a_i, \quad A^* := \sup_{i \in I} a_i \log(i+1).$$
 (19)

Then

$$\mathbb{P}\left(\sup_{i\in I} Y_i \ge 2\sqrt{V^* + v^*\log\frac{1}{\delta}} + 4A^* + 4a^*\log\frac{1}{\delta}\right) \le \delta.$$

Remark III.1. When considering the random variable $Z = \sup_{i \in \mathbb{N}} |\hat{p}_i - p_i|$, there is no loss of generality in assuming that $p_i \leq 1/2$, $i \in \mathbb{N}$. Indeed, $|Y_i| = |\hat{p}_i - p_i|$ is distributed as $|n^{-1}\operatorname{Bin}(n, p_i) - p_i|$, and the latter distribution is invariant under the transformation $p_i \mapsto 1 - p_i$.

Lemma III.2. For any distribution $p_{i \in \mathbb{N}}$,

$$V(p) \leq \phi(v^*(p)).$$

$$\sup_{i \in \mathbb{N}} v_i \log(i+1) \le v^* \log \frac{1}{v^*}$$

The monotonicity of the p_i implies $p_i \leq (p_1 + \ldots + p_i)/i \leq 1/i$. Now $x \leq 1/i \implies x(1-x) \leq 1/(i+1)$ for $i \in \mathbb{N}$, and hence $v_i \leq 1/(i+1)$. Thus, $v_i \log(i+1) \leq v_i \log \frac{1}{v_i}$. Finally, since $x \log(1/x)$ is increasing on [0, 1/4], which is the range of the v_i , we have $\sup_{i \in \mathbb{N}} v_i \log \frac{1}{v_i} \leq v^* \log \frac{1}{v^*}$.

Remark III.2. There is no reverse inequality of the form $\phi(v^*(p)) \leq F(V^*(p))$, for any fixed $F : \mathbb{R}_+ \to \mathbb{R}_+$. This can be seen by considering p supported on [k], with $p_1 = \log(k)/k$ and the remaining masses uniform. Then $V^*(p) \approx \log(k)/k$ while $\phi(v^*(p)) \approx \log(k) \log(k/\log k)/k$.

Proposition III.1. Let $n \ge 10$ and $\beta = \log(n)$. Then,

$$f(n) = \frac{\beta^{-\beta} n^2 \left(\frac{n-\beta}{n}\right)^{\beta-n}}{2^{\beta} - 2} \le \frac{81}{2}$$

Proof. To prove the above, we show that f(n) is decreasing for n > 200. This means that the maximum of f(n) may be numerically evaluated in the range $n \in \{10, ..., 200\}$. Finally, we verify that the maximum of f(n) is attained for n = 33, and is bounded from above by 81/2 as desired. It remains to verify that f(n) is decreasing for n > 200. Since f(n) is non-negative, it is enough to show that $g(n) = \log f(n)$ is decreasing. Denote

$$g(n) = -\beta \log \beta + 2 \log n + (n - \beta) \log(n - \beta) + (n - \beta) \log n - \log(2^{\beta} - 2).$$
 (20)

Taking the derivative of g(n) we have,

$$g'(n) =$$

$$-\frac{1}{n}(\log \beta + 1) + \frac{2}{n} + \left(1 - \frac{1}{n}\right)(-\log(n - \beta) - 1 + \log n) + \frac{n - \beta}{n} - \frac{1}{n}\frac{2^{\beta}\log 2}{2^{\beta} - 2} =$$

$$\frac{1}{n}\left((n - 1)\log\frac{n}{n - \beta} - \log \beta - \beta + 2 - \frac{2^{\beta}\log 2}{2^{\beta} - 2}\right) \leq$$

$$\frac{1}{n}\left(n\log\frac{n}{n - \beta} - \log \beta - \beta + 2 - \log 2\right) \leq \frac{1}{n}\left(\frac{n\beta}{n - \beta} - \log \beta - \beta + 2 - \log 2\right) =$$

$$\frac{1}{n}\left(\frac{\beta^{2}}{n - \beta} - \log \beta + 2 - \log 2\right),$$
(21)

where the first inequality follows from $\log(n/(n-\beta)) \ge 1$ and $2^{\beta}/(2^{\beta}-2) \ge 1$, while the second inequality is due to Bernoulli's inequality, $(n/(n-\beta))^n \le \exp(n\beta/(n-\beta))$. Finally, it is easy to show that $\beta^2/(n-\beta)$ is decreasing for $n \ge 10$. This means that $\beta^2/(n-\beta) \le (\log 10)^2/(10 - \log(10))$ and g'(n) < 0 for n > 200.

Lemma III.3 (generalized Fano method [2], Lemma 3). For $r \ge 2$, let \mathcal{M}_r be a collection of r probability measures $\nu_1, \nu_2, ..., \nu_r$ with some parameter of interest $\theta(\nu)$ taking values in pseudo-metric space (Θ, ρ) such that for all $j \ne k$, we have

$$\rho(\theta(\nu_j), \theta(\nu_k)) \ge \alpha$$

and

$$D(\nu_j \parallel \nu_k) \leq \beta.$$

Then

$$\inf_{\hat{\theta}} \max_{j \in [d]} \mathbb{E}_{Z \sim \mu_j} \rho(\hat{\theta}(Z), \theta(\nu_j)) \ge \frac{\alpha}{2} \left(1 - \left(\frac{\beta + \log 2}{\log r} \right) \right),$$

where the infimum is over all estimators $\hat{\theta} : Z \mapsto \Theta$.

Proposition III.2. Let p and q be two distributions with support size n. Define p by

$$p_1 = \frac{\log n}{2n \log \log n}, \quad p_i = \frac{1 - p_1}{n - 1}, \qquad i > 1,$$

and q by $q_2 = p_1$, and $q_i = p_2$ for $i \neq 2$. Then,

(i) $||p-q||_{\infty} \ge c \frac{\log n}{n \log \log n}$ for some c > 0 and all n sufficiently large.

(ii) $\lim_{n\to\infty} \frac{n}{\log n} D(p||q) = \frac{1}{2}$

Proof. For the first part, it is enough to show that

$$|p_1 - p_2| \ge c \log(n) / n \log \log n$$

for some c > 0 and sufficiently large n. First, we show that $p_1 \ge p_2$ for $n \ge (\log n)^2$. That is,

$$p_1 - \frac{1 - p_1}{n - 1} = \frac{np_1 - 1}{n - 1} > 0$$
(22)

for $np_1 > 1$. Next, fix $0 < c \le 1/2$. We have,

$$|p_{1} - p_{2}| - \frac{c \log(n)}{n \log \log n} = \frac{ap_{1} - 1}{n - 1} - \frac{c \log n}{n \log \log n} =$$

$$\frac{1}{n - 1} \left(\frac{\log n}{2 \log \log n} - 1 - \frac{n - 1}{n} \frac{c \log n}{\log \log n} \right) =$$

$$\frac{1}{(n - 1)2 \log \log n} \left(\log n \left(1 - \frac{n - 1}{n} 2c \right) - 2 \log \log n \right) > 0$$
(23)

where the last inequality holds for c(n-1)/n < 1/2 and sufficiently large n, as desired. We now proceed to the second part of the proof.

$$\frac{n}{\log n} D(p||q) = \frac{n}{\log n} \left(p_1 \log \frac{p_1}{q_1} + p_2 \log \frac{p_2}{q_2} \right) = \frac{n}{\log n} (p_1 - p_2) \log \frac{p_1}{p_2}.$$
 (24)

First, we have

$$\frac{n}{\log n}(p_1 - p_2) = \frac{n}{\log n} \left(p_1 - \frac{1 - p_1}{n - 1} \right) = \frac{n}{\log n} \left(\frac{np_1 - 1}{n - 1} \right) =$$
(25)
$$\frac{n}{\log n} \frac{\log n/2n \log \log n - 1}{n - 1} = \frac{n}{n - 1} \left(\frac{1}{2 \log \log n} - \frac{1}{\log n} \right).$$

Next,

$$\log \frac{p_1}{p_2} = \log(n-1) + \log \frac{p_1}{1-p_1} = \log(n-1) + \log \frac{\log n}{2n \log \log n - \log n} = (26)$$
$$\log(n-1) + \log \log n - 2 \log(2n \log \log n - \log n).$$

Putting it all together we obtain

$$\frac{n}{\log n} D(p||q) =$$

$$\frac{n}{n-1} \left(\frac{1}{2\log\log n} - \frac{1}{\log n} \right) \left(\log(n-1) + \log\log n - 2\log(2n\log\log n - \log n) \right) =$$

$$\frac{n}{n-1} \left(\frac{\log(n-1)}{2\log\log n} - \frac{\log(n-1)}{\log n} + \frac{1}{2} - \frac{\log\log n}{\log n} - \frac{\log(2n\log\log n - \log n)}{2\log\log n} + \frac{\log(2n\log\log n - \log n)}{\log n} \right) =$$

$$\frac{n}{n-1} \left(\frac{1}{2} + \frac{\log(n-1) - \log(2n\log\log n - \log n)}{2\log\log n} + \frac{\log(2n\log\log n - \log n)}{\log n} + \frac{\log(2n\log\log n - \log n)}{\log n} + \frac{\log(2n\log\log n - \log n) - \log(n-1)}{\log n} - \frac{\log\log n}{\log n} \right).$$
(27)

It is straightforward to show that the last three terms in the parenthesis above converge to zero for sufficiently large n, which leads to the stated result.

Lemma III.4 ([3]). When estimating a single Bernoulli parameter in the range $[0, p_0]$, $\Theta(p_0 \varepsilon^{-2} \log(1/\delta))$ draws are both necessary and sufficient to achieve additive accuracy ε with probability at least $1 - \delta$.

B. Bernstein inequalities

Background: Let $Y \sim Bin(n, \theta)$ be a Binomial random variable and let $\hat{\theta} = Y/n$ be the its MLE.

• Classic Bernstein [4]:

$$\mathbb{P}\left(\hat{\theta} - \theta \ge \varepsilon\right) \le \exp\left(-\frac{n\varepsilon^2}{2(\theta(1-\theta) + \varepsilon/3)}\right)$$
(28)

with an analogous bound for the left tail. This implies:

$$|\theta - \hat{\theta}| \leq \sqrt{\frac{2\theta(1-\theta)}{n}\log\frac{2}{\delta}} + \frac{2}{3n}\log\frac{2}{\delta}.$$
 (29)

• Empirical Bernstein [5, Lemma 5]:

$$|\theta - \hat{\theta}| \leq \sqrt{\frac{5\hat{\theta}(1-\hat{\theta})}{n}\log\frac{2}{\delta} + \frac{5}{n}\log\frac{2}{\delta}}.$$
(30)

We are now ready to present the proof of Theorem 5.

C. Proof of Theorem 5

Theorem 5. Let $p = p_{i \in \mathbb{N}}$ be a distribution over \mathbb{N} and put $v^* = v^*(p)$, $V^* = V(p)$. For $n \ge 81$ and $\delta \in (0, 1)$, we have that

$$\|p - \hat{p}\|_{\infty} \le 2\sqrt{\frac{V^*}{n} + \frac{v^*}{n}\log\frac{2}{\delta}} + \frac{4}{3n}\log\frac{2(n+1)}{\delta} + \frac{\log n}{n} \le$$
(31)

$$2\sqrt{\frac{\phi(v^*)}{n} + \frac{v^*}{n}\log\frac{2}{\delta}} + \frac{4}{3n}\log\frac{2(n+1)}{\delta} + \frac{\log n}{n};$$
 (32)

$$\|p - \hat{p}\|_{\infty} \le 2\sqrt{\frac{v^* \log(n+1)}{n} + \frac{v^*}{n} \log \frac{2}{\delta}} + \frac{4}{3n} \log \frac{2(n+1)}{\delta} + \frac{\log n}{n}$$
(33)

holds with probability at least $1 - \delta - 81/n$.

Proof. We assume without loss of generality that p is sorted in descending order: $p_1 \ge p_2 \ge \ldots$ and further, as per Remark III.1, that $p_1 \le 1/2$. The estimate \hat{p}_i is just the MLE based on n iid draws.

Our strategy for analyzing $\sup_{i \in \mathbb{N}} |\hat{p}_i - p_i|$ will be to break up p into the "heavy" masses, where we apply a maximal Bernstein-type inequality, and the "light" masses, where we apply a multiplicative Chernoff-type bound.

We define the "heavy" masses as those with $p_i \ge 1/n$. Denote by $I \subset \mathbb{N}$ the set of corresponding indices and note that $|I| \le n$. For $i \in I$, put $Y_i = \hat{p}_i - p_i$. Then (28) implies that each Y_i satisfies (18) with $v_i = p_i(1 - p_i)/n$ and $a_i = 1/(3n)$; trivially, $\max_{i \in I} a_i \log(i + 1) = \log(n + 1)/(3n)$. Invoking Lemma III.1 twice (once for Y_i and again for $-Y_i$) together with the union bound,

we have, with probability $\geq 1 - \delta$,

$$\max_{i \in I} |\hat{p}_i - p_i| \le 2\sqrt{\frac{V^*}{n} + \frac{v^*}{n}\log\frac{2}{\delta}} + \frac{4\log(n+1)}{3n} + \frac{4}{3n}\log\frac{2}{\delta}.$$
(34)

Next, we analyze the light masses. Our first "segment" consisted of the $p_i \in [n^{-1}, 1]$; these were the heavy masses. We take the next segment to consist of $p_i \in [(2n)^{-1}, n^{-1}]$, of which there are at most 2n atoms. The segment after that will be in the range $[(4n)^{-1}, (2n)^{-1}]$, and, in general, the kth segment is in the range $[(2^k n)^{-1}, (2^{k-1}n)^{-1}]$, and will contain at most $2^k n$ atoms. To the *k*th segment, we apply the Chernoff bound $\mathbb{P}(\hat{p} \ge p + \varepsilon) \le \exp(-nD(p + \varepsilon||p))$, where $p = (2^k n)^{-1}$ and $\varepsilon = \varepsilon_k = 2^k p\beta - p$, for some β to be specified below. [Note that $D(\alpha p||p)$ is monotonically increasing in p for fixed α , so we are justified in taking the left endpoint.] For this choice, in the *k*th segment we have

$$D(p + \varepsilon || p) = D(2^{k} p\beta || p) = D\left(\frac{\beta}{n} \left\| \frac{1}{2^{k} n}\right)$$
$$= \frac{(n - \beta) \log\left(\frac{2^{k} (n - \beta)}{2^{k} n - 1}\right) + \beta \log\left(2^{k} \beta\right)}{n}$$
$$\geq \frac{(n - \beta) \log\left(\frac{n - \beta}{n}\right) + \beta \log\left(2^{k} \beta\right)}{n},$$

since neglecting the $-1/2^k$ additive term in the denominator decreases the expression. Let E be the event that *any* of the p_i s in any of the segments k = 1, 2, ... has a corresponding \hat{p}_i that exceeds β/n . Then

$$\mathbb{P}(E) \leq \sum_{k=1}^{\infty} 2^k n \exp\left(-(n-\beta)\log\left(\frac{n-\beta}{n}\right) - \beta\log\left(2^k\beta\right)\right) = \frac{2\beta^{-\beta}n\left(\frac{n-\beta}{n}\right)^{\beta-n}}{2^\beta - 2}.$$

For the choice $\beta = \log n$, we have

$$\mathbb{P}(E) \le \frac{2\beta^{-\beta}n\left(\frac{n-\beta}{n}\right)^{\beta-n}}{2^{\beta}-2} \le \frac{81}{n}, \qquad n \ge 10,$$
(35)

which is proved in Proposition III.1. Now E is the event that $\sup_{i:p_i < 1/n} (\hat{p}_i - p_i) \ge \log(n)/n$. Since $p_i < 1/n$, there is no need to consider the left-tail deviation at this scale, as all of the probabilities will be zero. Combining (34) with (35) yields (31). Since Lemma III.2 implies that $V^* \le \phi(v^*)$, (32) follows from (31). Finally, (33) follows from (31) via the obvious relation $V^* \le \log(n+1)v^*$.

IV. A PROOF FOR THEOREM 6

We begin with an elementary observation: for $N \in \mathbb{N}$ and $a, b \in [0, 1]^N$, we have

$$\left| \max_{i \in [N]} a_i (1 - a_i) - \max_{i \in [N]} b_i (1 - b_i) \right| \leq \max_{i \in [N]} |a_i - b_i|,$$

and this also carries over to $a, b \in [0, 1]^{\mathbb{N}}$. Let us denote $v^* := \sup_{i \in \mathbb{N}} p_i(1 - p_i)$ and $\hat{v}^* := \sup_{i \in \mathbb{N}} \hat{p}_i(1 - \hat{p}_i)$.

Together with (33), this implies

$$|v^* - \hat{v}^*| \le ||p - \hat{p}||_{\infty} \le a + b\sqrt{v^*}$$

where

$$a = \frac{4}{3n} \log \frac{2(n+1)}{\delta} + \frac{\log n}{n},$$

$$b = 2\sqrt{\frac{\log(n+1)}{n} + \frac{1}{n} \log \frac{2}{\delta}}.$$

Following the proof of Lemma 5 in [5],

$$\begin{aligned} |v^* - \hat{v}^*| &\leq a + b\sqrt{v^*} \\ &\leq a + b\sqrt{\hat{v}^* + |v^* - \hat{v}^*|} \\ &\leq a + b\sqrt{\hat{v}^*} + b\sqrt{|v^* - \hat{v}^*|}, \end{aligned}$$

where we used $v^* \leq \hat{v}^* + |v^* - \hat{v}^*|$ and $\sqrt{x+y} \leq \sqrt{x} + \sqrt{y}$.

Now we have an expression of the form

$$A \le B\sqrt{A} + C,$$

where $A = |v^* - \hat{v}^*|$, B = b, $C = a + b\sqrt{\hat{v}^*}$, which implies $A \le B^2 + B\sqrt{C} + C$, or

$$|v^* - \hat{v}^*| \le b^2 + a + b\sqrt{\hat{v}^*} + b\sqrt{a + b\sqrt{\hat{v}^*}}.$$

Using $\sqrt{x+y} \leq \sqrt{x} + \sqrt{y}$ and $\sqrt{xy} \leq (x+y)/2$,

$$\begin{aligned} |v^* - \hat{v}^*| &\leq b^2 + a + b\sqrt{\hat{v}^*} + b\sqrt{a} + b\sqrt{b\sqrt{\hat{v}^*}} \\ &\leq b^2 + a + b\sqrt{\hat{v}^*} + b\sqrt{a} + b(b + \sqrt{\hat{v}^*})/2 \\ &= a + 3b^2/2 + b\sqrt{a} + 3b\sqrt{\hat{v}^*}/2. \end{aligned}$$

We still have

$$a + b\sqrt{v^*} \le a + 3b^2/2 + b\sqrt{a} + 3b\sqrt{\hat{v}^*}/2,$$

whence, with probability $1 - \delta$,

$$\|p - \hat{p}\|_{\infty} \le a + 3b^2/2 + b\sqrt{a} + 3b\sqrt{\hat{v}^*}/2.$$
(36)

V. A PROOF FOR THEOREM 7

We begin with the following proposition.

Proposition V.1. Assume there exists $V_{\delta}(X^n)$ such that

$$\mathbb{P}\left(|p_j - \hat{p}_j| \ge V_{\delta}(X^n)|p_j = p_{[1]}\right) \le \delta.$$
(37)

Then,

$$\mathbb{E}(V_{\delta}(X^n)) \ge z_{\delta/2} \sqrt{\frac{p_{[1]}(1-p_{[1]})}{n}} + O\left(\frac{1}{n}\right).$$

Proof. Assume there exists $V_{\delta}(X^n)$ that satisfies (37) and

$$\mathbb{E}(V_{\delta}(X^{n})) < z_{\delta/2} \sqrt{\frac{p_{[1]}(1-p_{[1]})}{n}} + O\left(\frac{1}{n}\right).$$

From (37), we have that

$$\mathbb{P}\left(|p_j - \hat{p}_j| \ge U_{\delta}(X^n)|p_j = p_{[1]}\right) = \mathbb{P}\left(|p_{[1]} - \hat{p}_j| \ge U_{\delta}(X^n)|p_j = p_{[1]}\right) \le \delta.$$
(38)

Now, consider $Y \sim Bin(n, p_{[1]})$. Let Y^n be a sample of n independent observations. Notice we can always extend the Binomial case to a multinomial setup with parameters p, over any alphabet size $||p||_0$. That is, given a sample Y^n , we may replace every Y = 0 (or Y = 1) with a sample from a multinomial distribution over an alphabet size $||p||_0 - 1$. Further, we may focus on samples for which $p_{[1]}$ is the most likely event in the alphabet, and construct a CI for $p_{[1]}$ following (38). This means that we found a CI for $p_{[1]}$ with an expected length that is shorter than the CP CI, which contradicts its optimality.

Now, assume there exists $U_{\delta}(X^n)$ that satisfies

$$\mathbb{P}\left(|p_j - \hat{p}_j| \ge U_{\delta}(X^n)\right) \le \delta.$$
(39)

and

$$\mathbb{E}(U_{\delta}(X^{n})) < z_{\delta/2} \sqrt{\frac{p_{[1]}(1-p_{[1]})}{n}} + O\left(\frac{1}{n}\right).$$
(40)

For simplicity of notation, denote $v = \arg \max_i p_i$ as the symbol with the greatest probability in the alphabet. That is, $p_v = p_{[1]}$. We implicitly assume that v is unique, although the proof holds in case of several maxima as well. We have that

$$\mathbb{P}\left(|p_{j} - \hat{p}_{j}| \geq U_{\delta}(X^{n})\right) =$$

$$\sum_{u \in \mathcal{X}} \mathbb{P}\left(|p_{j} - \hat{p}_{j}| \geq U_{\delta}(X^{n})|j = u\right) \mathbb{P}(j = u) =$$

$$\mathbb{P}\left(|p_{[1]} - \hat{p}_{j}| \geq U_{\delta}(X^{n})|j = v\right) \mathbb{P}(j = v) +$$

$$\sum_{u \neq v} \mathbb{P}\left(|p_{j} - \hat{p}_{j}| \geq U_{\delta}(X^{n})|j = u\right) \mathbb{P}(j = u).$$
(41)

Proposition V.1 together with assumption (40) suggest that

$$\mathbb{P}\left(|p_{[1]} - \hat{p}_j| \ge U_{\delta}(X^n)|j=v\right) > \delta.$$

On the other hand, it is well-known that $\hat{p}_{[1]} \to p_{[1]}$ for sufficiently large n [6], [7], [8]. This means that $\mathbb{P}(j = u) \to 1$ and (41) is bounded from below by δ , for sufficiently large n. This contradicts (38) as desired.

APPENDIX A

We show that

$$\sup_{p \in [0,1-1/n]} \left| \left(p(1-p) \right)^k - \left((p+1/n)(1-(p+1/n)) \right)^k \right| \le \frac{k}{n \cdot 4^{k-1}} + \frac{3k(k-1)(k-2)}{n^3 \cdot 2^{2k-5}}$$

Let $0 \le p \le 1/2 - 1/n$. Denote $f_k(p) = ((p(1-p))^k)$. Applying Taylor series to $f_k(p+1/n)$ around $f_k(p)$ yields

$$f_k\left(p+\frac{1}{n}\right) = f_k(p) + \frac{1}{n}f'_k(p) + r(p)$$

where $r(p) = \frac{1}{3!} \frac{1}{n^3} f'''(c)$ is the residual and $c \in [p, p + 1/n]$ [9]. We have

$$f'_{k}(p) = k \left(p(1-p) \right)^{k-1} (1-2p) \le k \left(p(1-p) \right)^{k-1}$$

$$f'''_{k}(p) = k(k-1)(k-2)p^{k-3}(1-p)^{k-3}(1-2p)^{3} - 6k(k-1)p^{k-2}(1-p)^{k-2}(1-2p) \le k(k-1)p^{k-3}(1-p)^{k-3} \left((k-2) + 6p(1-p) \right).$$

$$(42)$$

Hence,

$$\sup_{p \in [0,1/2-1/n]} \left| (p(1-p))^{k} - ((p+1/n)(1-(p+1/n)))^{k} \right| =$$

$$\sup_{p \in [0,1/2-1/n]} \left| -\frac{1}{n} f_{k}'(p) - \frac{1}{3!} \frac{1}{n^{3}} f'''(c) \right| \leq \sup_{p \in [0,1/2-1/n]} \frac{1}{n} \left| f_{k}'(p) \right| + \frac{1}{3!} \frac{1}{n^{3}} \left| f'''(c) \right| \stackrel{(i)}{\leq}$$

$$\sup_{p \in [0,1/2-1/n]} \frac{k}{n} (p(1-p))^{k-1} + k(k-1)p^{k-3}(1-p)^{k-3} ((k-2) + 6p(1-p)) \stackrel{(ii)}{\leq}$$

$$\frac{k}{n \cdot 4^{k-1}} + \frac{3k(k-1)(k-2)}{n^{3} \cdot 2^{2k-5}}$$

where

- (i) follows from (42).
- (ii) follows from the concavity of $(p(1-p))^k$ for $k \ge 1$.

APPENDIX B

We study $\min_m m/a^{1/m}$ for some positive a. This problem is equivalent to

$$\min_{m} \log(m) - \frac{1}{m} \log(a).$$

Taking its derivative with respect to m and setting it to zero yields

$$\frac{d}{dm}\log(m) - \frac{1}{m}\log(a) = \frac{1}{m} + \frac{1}{m^2}\log(a) = 0.$$

Hence, $m^* = \log(1/a)$. Therefore,

$$\min_{m} m/a^{1/m} = \exp(\log(m^*) - (1/m^*)\log(a)) = \exp(1)\log(1/a).$$
(44)

APPENDIX C

We study

$$\min_{m \in \mathbb{R}^+} \left(\frac{\sqrt{m/2}}{\delta^{1/m}} \right) \exp\left(-\frac{1}{2} + \frac{1}{m} \right)$$
(45)

This problem is equivalent to

$$\min_{d \in \mathbb{R}^+} \frac{1}{2} \log(d) + \frac{1}{2d} \log\left(\frac{1}{\delta}\right) - \frac{1}{2} + \frac{1}{2d}$$
(46)

where d = m/2. Taking its derivative with respect to d and setting it to zero yields

$$\frac{1}{2d} - \frac{1}{2d^2} \left(\log\left(\frac{1}{\delta}\right) + 1 \right) = 0.$$

Hence, $d^* = \log(1/\delta) + 1$. Therefore,

$$\min_{d \in \mathbb{R}^+} \frac{1}{2} \log(d) + \frac{1}{2d} \log\left(\frac{1}{\delta}\right) - \frac{1}{2} + \frac{1}{2d} = \frac{1}{2} \log(\log(1/\delta) + 1)$$
(47)

and

$$\min_{m \in \mathbb{R}^+} \left(\frac{\sqrt{m/2}}{\delta^{1/m}} \right) \exp\left(-\frac{1}{2} + \frac{1}{m} \right) = \sqrt{\log\left(\frac{1}{\delta}\right) + 1}.$$
(48)

APPENDIX D

Proposition V.2. Let $p_{i \in \mathbb{N}}$ be a probability distribution over \mathbb{N} . Then,

$$p_{[1]} = \max_{i \in \mathbb{N}} p_i (1 - p_i)$$
(49)

where $p_{[1]} = \max_{i \in \mathbb{N}} p_i$ is the largest element in p.

Proof. Let us first consider the case where $p_i \leq 1/2$ for all $i \in \mathbb{N}$. Then (49) follows directly from the montonicity of $p_i(1-p_i)$ for $p_i \in [0, 1/2]$. Next, assume there exists a single $p_j > 1/2$. Specifically, $p_j = 1/2 + a$ for some positive a. Then, the remaining p_i 's are necessarily smaller than 1/2. Further, the maximum of $p_i(1-p_i)$ over $i \neq j$ is obtained for $p_i = 1/2 - a$, from the same monotonicity reason. This means that $\max_{i\neq j} p_i(1-p_i) = (1/2-a)(1-(1/2-a)) = (1/2+a)(1-(1/2+a))$ where

the second equality follows from the symmetry of $p_i(1-p_i)$ around $p_i = 1/2$, which concludes the proof.

REFERENCES

- [1] D. Cohen and A. Kontorovich, "Local glivenko-cantelli," in *The Thirty Sixth Annual Conference on Learning Theory, COLT*, vol. 195, 2023, p. 715.
- B. Yu, "Assouad, Fano, and Le Cam," *Festschrift for Lucien Le Cam: research papers in probability and statistics*, pp. 423–435, 1997.
- [3] Y. Peres, "Learning a coin's bias (localized)," Theoretical Computer Science Stack Exchange, 2017, uRL:https://cstheory.stackexchange.com/q/38931 (version: 2017-08-28).
- [4] S. Boucheron, G. Lugosi, and O. Bousquet, "Concentration inequalities," in *Summer school on machine learning*. Springer, 2003, pp. 208–240.
- [5] S. Dasgupta and D. Hsu, "Hierarchical sampling for active learning," in *Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008, 2008, pp. 208–215.*
- [6] A. Gelfand, J. Glaz, L. Kuo, and T.-M. Lee, "Inference for the maximum cell probability under multinomial sampling," *Naval Research Logistics (NRL)*, vol. 39, no. 1, pp. 97–114, 1992.
- [7] X. Shifeng and L. Guoying, "Testing for the maximum cell probabilities in multinomial distributions," *Science in China Series A: Mathematics*, vol. 48, pp. 972–985, 2005.
- [8] S. Xiong and G. Li, "Inference for ordered parameters in multinomial distributions," *Science in China Series A: Mathematics*, vol. 52, no. 3, pp. 526–538, 2009.
- [9] K. R. Stromberg, An introduction to classical real analysis. American Mathematical Soc., 2015, vol. 376.