Supplemental Material for ISF Proposal: Large Alphabet Inference

I. A PROOF FOR THEOREM 3

We begin with the following proposition.

Proposition I.1. *Let* $\delta_2 > 0$ *. Then, with probability* $1 - \delta_2$ *,*

$$
\sum_{i} \sum_{k=1}^{m/2} k^{m-k} (np_i (1-p_i))^k \le \frac{n}{n-1} \bigg(\sum_{i} \sum_{k=1}^{m/2} k^{m-k} (n\hat{p}_i (1-\hat{p}_i))^k + \epsilon \bigg) \qquad (1)
$$

for every even m*, where*

$$
\epsilon = \sqrt{\frac{n}{2} \log(1/\delta_2)} \sum_{k=1}^d k^{m-k} n^k \left(\frac{k}{n4^{k-1}} + \frac{3k(k-1)(k-2)}{n^3 \cdot 2^{2k-5}} \right) \tag{2}
$$

Proof. Define $\psi(n, d, \hat{p}) = \sum_{i} \sum_{k=1}^{d} k^{m-k} (n\hat{p}_i(1-\hat{p}_i))^k$. McDiarmind's inequality suggests that

$$
\mathbf{P}\left(\psi(n,d,\hat{p}) - \mathbb{E}\left(\psi(n,d,\hat{p})\right) \le -\epsilon\right) \le \exp\left(\frac{-2\epsilon^2}{\sum_{j=1}^n c_j^2}\right)
$$

where

.

$$
\sup_{x_j' \in \mathcal{X}} |\psi(n, d, \hat{p}) - \psi(n, d, \hat{p}')| \le c_j.
$$
\n(3)

where \hat{p}' is the MLE over the same sample x^n , but with a different j^{th} observation, x'_j .

First, let us find c_j . We have

$$
\sup_{x'_{j} \in \mathcal{X}} |\psi(n, d, \hat{p}) - \psi(n, d, \hat{p}')| \leq
$$
\n
$$
\sup_{p \in [0, 1-1/n]} 2 |\sum_{k=1}^{d} k^{m-k} (np(1-p))^{k} - \sum_{k=1}^{d} k^{m-k} (n(p+1/n)(1-(p+1/n)))^{k})| =
$$
\n
$$
\sup_{p \in [0, 1-1/n]} 2 |\sum_{k=1}^{d} k^{m-k} n^{k} (p(1-p))^{k} - ((p+1/n)(1-(p+1/n)))^{k})| \leq
$$
\n
$$
2 \sum_{k=1}^{d} k^{m-k} n^{k} \left(\frac{k}{n \cdot 4^{k-1}} + \frac{3k(k-1)(k-2)}{n^{3} \cdot 2^{2k-5}} \right)
$$
\n(4)

where

- (i) Changing a single observation effects only two symbols (for example, \hat{p}_l and \hat{p}_t), where the change is $\pm 1/n$.
- (ii) Please refer to Appendix A below.

Next, we have

$$
\mathbb{E}(\psi(n, d, \hat{p})) \ge \sum_{i} \sum_{k=1}^{d} k^{m-k} n^{k} \left(\mathbb{E}(\hat{p}_{i}(1 - \hat{p}_{i})) \right)^{k} =
$$
\n
$$
\sum_{i} \sum_{k=1}^{d} k^{m-k} n^{k} \left(\left(1 - \frac{1}{n} \right) p_{i}(1 - p_{i}) \right)^{k} \ge
$$
\n
$$
\left(1 - \frac{1}{n} \right) \sum_{i} \sum_{k=1}^{d} k^{m-k} (n p_{i}(1 - p_{i}))^{k}
$$
\n(5)

where the first inequality follows from Jensen Inequality and the equality that follows is due to $\mathbb{E}(\hat{p}_i(1-\hat{p}_i)) = p(1-p)(1-1/n)$. Going back to McDiarmind's inequality, we have

$$
\mathbb{P}\left(\mathbb{E}\psi(n,d,\hat{p})\ge\psi(n,d,\hat{p})+\epsilon\right)\le\exp\left(\frac{-2\epsilon^2}{nc_j^2}\right)\tag{6}
$$

In word, the probability that the random variable $Z = \psi(n, d, \hat{p})$ is smaller than a constant $C = \mathbb{E}(\psi(n, d, \hat{p})) - \epsilon$ is not greater that $\nu = \exp(-2\epsilon^2/\sum_{j=1}^n c_j^2)$. Therefore, it necessarily means that the probability that Z is smaller than a constant smaller than

 C , is also not greater than ν . Hence, plugging (5) we obtain

$$
\mathbb{P}\left(\left(1-\frac{1}{n}\right)\psi(n,d,p)\geq\psi(n,d,\hat{p})+\epsilon\right)\leq\exp\left(\frac{-2\epsilon^2}{\sum_j c_j^2}\right)
$$

Setting the right hand side to equal δ_2 we get

$$
\epsilon = \sqrt{\frac{n}{2} \log(1/\delta_2)} \sum_{k=1}^{d} k^{m-k} n^k \left(\frac{k}{n \cdot 4^{k-1}} + \frac{3k(k-1)(k-2)}{n^3 \cdot 2^{2k-5}} \right) \tag{7}
$$

and with probability $1 - \delta_2$,

$$
\sum_{i} \sum_{k=1}^{d} k^{m-k} (np_i (1 - p_i))^k \le \frac{n}{n-1} \left(\sum_{i} \sum_{k=1}^{d} k^{m-k} (n \hat{p}_i (1 - \hat{p}_i))^k + \epsilon \right) \tag{8}
$$

Finally, we apply the union bound with $\delta = \delta_1$ and Proposition I.1 to obtain the stated result.

II. A PROOF FOR COROLLARY 4

We prove the Corollary with two propositions.

Proposition II.1. *Let* $\delta_1 > 0$ *. Then, with probability* $1 - \delta_1$ *,*

$$
\sup_{i \in \mathcal{X}} |p_i - \hat{p}_i(X^n)| \le \frac{m}{2n} \left(\frac{1}{\delta_1}\right)^{1/m} \left(\sum_i \sum_{k=1}^{m/2} (np_i(1-p_i))^k\right)^{1/m} \tag{9}
$$

for every even $m > 0$ *.*

Proof. First, we have

$$
\mathbb{E}\left(\sup_{i} |p_{i} - \hat{p}_{i}(X^{n})|\right)^{m} \leq \frac{1}{n^{m}} \sum_{i} \sum_{k=1}^{d} k^{m-k} (np_{i}(1-p_{i}))^{k} \leq
$$

$$
\left(\frac{d}{m}\right)^{m} \sum_{i} \sum_{k=1}^{d} (np_{i}(1-p_{i}))^{k}
$$

where $d = n/2$ and

- (i) follows from (15) in the main text .
- (ii) follows from $k^{m-k} \leq d^m$ for every $k \in \{1, ..., d\}$.

Applying Markov's inequality we obtain

$$
\mathbb{P}\left(\sup_{i}|p_{i}-\hat{p}_{i}(X^{n})|\geq a\right) \leq \frac{1}{a^{m}}\mathbb{E}\left(\sup_{i}|p_{i}-\hat{p}_{i}(X^{n})|\right)^{m} \leq \qquad (10)
$$

$$
\frac{1}{a^{m}}\left(\frac{d}{n}\right)^{m}\sum_{i}\sum_{k=1}^{d}(np_{i}(1-p_{i}))^{k}.
$$

Setting the right hand side to equal δ_1 yields

$$
a = \left(\frac{1}{\delta_1} \left(\frac{d}{n}\right)^m \sum_i \sum_{k=1}^d (np_i(1-p_i))^k\right)^{1/m} = \frac{m}{2n} \left(\frac{1}{\delta_1} \sum_i \sum_{k=1}^{m/2} (np_i(1-p_i))^k\right)^{1/m}.
$$

Proposition II.2. *Let* $\delta_2 > 0$ *. Then, with probability* $1 - \delta_2$ *,*

$$
\sum_{i} \sum_{k=1}^{d} (np_i (1 - p_i))^k \le
$$
\n
$$
\frac{n}{n-1} \left(\sum_{i} \sum_{k=1}^{d} (n\hat{p}_i (1 - \hat{p}_i))^k + d \sqrt{\frac{1}{2} \log(1/\delta_2)} \left(2n^{d-1/2} + 48n^{d-5/2} \right) \right)
$$
\n(11)

for every even m*.*

Proof. McDiarmind's inequality suggests that

$$
\mathbb{P}\left(\sum_{i}\sum_{k=1}^{d} (n\hat{p}_i(1-\hat{p}_i))^k - \mathbb{E}\left(\sum_{i}\sum_{k=1}^{d} (n\hat{p}_i(1-\hat{p}_i))^k\right) \leq -\epsilon\right) \leq \exp\left(\frac{-2\epsilon^2}{\sum_{j=1}^{n} c_j^2}\right)
$$

where

$$
\sup_{x_j' \in \mathcal{X}} \left| \sum_i \sum_{k=1}^d (n\hat{p}_i (1 - \hat{p}_i))^k - \sum_i \sum_{k=1}^d (n\hat{p}'_i (1 - \hat{p}'_i))^k) \right| \le c_j.
$$
 (12)

First, let us find c_j . We have

$$
\sup_{x'_j \in \mathcal{X}} \Big| \sum_{i} \sum_{k=1}^{d} (n\hat{p}_i (1 - \hat{p}_i))^k - \sum_{i} \sum_{k=1}^{d} (n\hat{p}'_i (1 - \hat{p}'_i))^k) \Big| \stackrel{\text{(i)}}{\leq} \tag{13}
$$
\n
$$
2 \sup_{p \in [0,1-1/n]} \Big| \sum_{k=1}^{d} (np(1-p))^k - \sum_{k=1}^{d} (n(p+1/n)(1 - (p+1/n)))^k) \Big| =
$$
\n
$$
2 \sup_{p \in [0,1-1/n]} \Big| \sum_{k=1}^{d} n^k (p(1-p))^k - ((p+1/n)(1 - (p+1/n)))^k) \Big| \le
$$
\n
$$
2 \sum_{k=1}^{d} n^k \sup_{p \in [0,1-1/n]} \Big| (p(1-p))^k - ((p+1/n)(1 - (p+1/n)))^k) \Big| \stackrel{\text{(ii)}}{=}
$$
\n
$$
2 \sum_{k=1}^{d} n^k \left(\frac{k}{n \cdot 4^{k-1}} + \frac{3k(k-1)(k-2)}{n^3 \cdot 2^{2k-5}} \right) \le
$$
\n
$$
n^{d-1} \sum_{k=1}^{d} \left(\frac{2k}{4^{k-1}} + \frac{3k(k-1)(k-2)}{n^2 \cdot 2^{2k-4}} \right) \stackrel{\text{(iii)}}{=} 2dn^{d-1} + 48dn^{d-3}
$$
\n(13)

where

- (i) Changing a single observation effects only two symbols (for example, \hat{p}_l and \hat{p}_t), where the change is $\pm 1/n$.
- (ii) Please refer to Appendix A.
- (iii) Follows from $\sum_{k=1}^{d}$ k $\frac{k}{4^{k-1}} = 4 \sum_{k=1}^{d}$ k $\frac{k}{4^k} \leq d$ and

$$
\sum_{k=1}^{d} \frac{k(k-1)(k-2)}{4^{k-2}} \le \sum_{k=1}^{d} \frac{k^3}{4^{k-2}} \le d \max_{k \in [1,d]} \frac{k^3}{4^{k-2}} \le 16 \frac{2 \exp(-3)}{\log(4)} \le 16 \quad (14)
$$

where the maximum is obtain for $k^* = 3/\log(4)$.

next, we have

$$
\mathbb{E}\bigg(\sum_{i}\sum_{k=1}^{d} (n\hat{p}_i(1-\hat{p}_i))^k\bigg) \ge \sum_{i}\sum_{k=1}^{d} \left(\mathbb{E}(n\hat{p}_i(1-\hat{p}_i))\right)^k = \sum_{i}\sum_{k=1}^{d} n^k \left(\left(1-\frac{1}{n}\right)p_i(1-p_i)\right)^k \ge \left(1-\frac{1}{n}\right)\sum_{i}\sum_{k=1}^{d} (np_i(1-p_i))^k
$$
\n(15)

Going back to McDiarmind's inequality, we have

$$
\mathbb{P}\left(\mathbb{E}\left(\sum_{i}\sum_{k=1}^{d}(n\hat{p}_i(1-\hat{p}_i))^k\right)\geq \sum_{i}\sum_{k=1}^{d}(n\hat{p}_i(1-\hat{p}_i))^k + \epsilon\right) \leq \exp\left(\frac{-2\epsilon^2}{\sum_{j=1}^{n}c_j^2}\right)
$$
\n(16)

Plugging (15) we obtain

$$
\mathbb{P}\left(\left(1-\frac{1}{n}\right)\sum_{i}\sum_{k=1}^{d}(np_i(1-p_i))^k\geq \sum_{i}\sum_{k=1}^{d}(n\hat{p}_i(1-\hat{p}_i))^k+\epsilon\right)\leq \exp\left(\frac{-2\epsilon^2}{\sum_{j}c_j^2}\right)
$$

Setting the right hand side to equal δ_2 we get

$$
\epsilon = \sqrt{\frac{n}{2} \log(1/\delta_2)} \left(2dn^{d-1} + 48dn^{d-3}\right)
$$

and with probability $1 - \delta_2$,

$$
\sum_{i} \sum_{k=1}^{d} (np_i (1 - p_i))^k \le
$$
\n
$$
\frac{n}{n-1} \left(\sum_{i} \sum_{k=1}^{d} (n\hat{p}_i (1 - \hat{p}_i))^k + d \sqrt{\frac{1}{2} \log(1/\delta_2)} \left(2n^{d-1/2} + 48n^{d-5/2} \right) \right)
$$
\n
$$
\Box
$$

Finally, we apply the union bound to Propositions II.1 and II.2 to obtain

$$
\sup_{i \in \mathcal{X}} |p_i - \hat{p}_i(X^n)| \le
$$
\n
$$
\frac{m}{2n} \left(\frac{1}{\delta_1} \frac{n}{n-1} \left(\sum_{i} \sum_{k=1}^d (n\hat{p}_i (1-\hat{p}_i))^k + d \sqrt{\frac{1}{2} \log(1/\delta_2)} (2n^{d-1/2} + 48n^{d-5/2}) \right) \right)^{1/m} \le
$$
\n
$$
\frac{m}{2\delta_1^{1/m}} \frac{1}{n} \left(\frac{n}{n-1} \right)^{1/m} \left(\sum_{i} \sum_{k=1}^{m/2} (n\hat{p}_i (1-\hat{p}_i))^k \right)^{1/m} +
$$
\n
$$
\frac{m}{2\delta_1^{1/m}} \frac{1}{n} \left(\frac{n}{n-1} \right)^{1/m} (m/2)^{1/m} \left(\frac{1}{2} \log \left(\frac{1}{\delta_2} \right) \right)^{1/m} \left(2n^{\frac{1}{2} - \frac{1}{2m}} + 48n^{\frac{1}{2} - \frac{5}{2m}} \right)
$$

with probability $1 - \delta_1 - \delta_2$. Define $g(m, \delta_1) = m/\delta_1^{1/m}$. Further, it is immediate to show

that $(m/2)^{1/m} \leq \sqrt{\exp(1/\exp(1))}$. Hence, with probability $1 - \delta_1 - \delta_2$,

$$
\sup_{i \in \mathcal{X}} |p_i - \hat{p}_i(X^n)| \le \frac{g(m, \delta_1)}{n} \left(\sum_i \sum_{k=1}^{m/2} (n\hat{p}_i (1 - \hat{p}_i))^k \right)^{1/m} +
$$

$$
bg(m, \delta_1) (\log(1/\delta_2))^{1/2m} \left(n^{-\frac{1}{2}(1 + \frac{1}{m})} + 24n^{-\frac{1}{2}(1 + \frac{5}{m})} \right)
$$

for every even m, where $b = \sqrt{2 \exp(1/\exp(1))}$. Finally, we would like to choose m which minimizes $g(m, \delta_1)$. We show in Appendix B that $\inf_m g(m, \delta_1) = \exp(1) \log(1/\delta_1)$, where and the infimum is obtained for a choice of $m^* = \log(1/\delta_1)$.

III. A PROOF OF THEOREM 5

Let us first introduce some auxiliary results and background

A. Auxiliary Results

Lemma III.1 (contained in the proof of Lemma 10, [1]). Let $Y_{i \in I \subseteq N}$ be random variables *such that, for each* $i \in I$ *, there are* $v_i > 0$ *and* $a_i \geq 0$ *satisfying*

$$
\mathbb{P}\left(Y_i \geq \varepsilon\right) \leq \exp\left(-\frac{\varepsilon^2}{2(v_i + a_i \varepsilon)}\right), \qquad \varepsilon \geq 0. \tag{18}
$$

Put

$$
v^* := \sup_{i \in I} v_i, \quad V^* := \sup_{i \in I} v_i \log(i+1), \quad a^* := \sup_{i \in I} a_i, \quad A^* := \sup_{i \in I} a_i \log(i+1). \tag{19}
$$

Then

$$
\mathbb{P}\left(\sup_{i\in I}Y_i\geq 2\sqrt{V^*+v^*\log\frac{1}{\delta}}+4A^*+4a^*\log\frac{1}{\delta}\right) \leq \delta.
$$

Remark III.1. When considering the random variable $Z = \sup_{i \in \mathbb{N}} |\hat{p}_i - p_i|$, there is no *loss of generality in assuming that* $p_i \leq 1/2$, $i \in \mathbb{N}$. Indeed, $|Y_i| = |\hat{p}_i - p_i|$ is distributed as $|n^{-1}\operatorname{Bin}(n, p_i) - p_i|$, and the latter distribution is invariant under the transformation $p_i \mapsto 1 - p_i.$

Lemma III.2. For any distribution $p_{i \in \mathbb{N}}$,

$$
V(p) \leq \phi(v^*(p)).
$$

Proof. (This elegant proof idea is due to Václav Voráček.) There is no loss of generality in assuming $p = p^{\downarrow}$. The claim then amounts to

$$
\sup_{i \in \mathbb{N}} v_i \log(i+1) \le v^* \log \frac{1}{v^*}.
$$

The monotonicity of the p_i implies $p_i \leq (p_1 + \ldots + p_i)/i \leq 1/i$. Now $x \leq 1/i \implies$ $x(1-x) \le 1/(i+1)$ for $i \in \mathbb{N}$, and hence $v_i \le 1/(i+1)$. Thus, $v_i \log(i+1) \le v_i \log \frac{1}{v_i}$. Finally, since $x \log(1/x)$ is increasing on $[0, 1/4]$, which is the range of the v_i , we have $\sup_{i \in \mathbb{N}} v_i \log \frac{1}{v_i} \leq v^* \log \frac{1}{v^*}.$ \Box

Remark III.2. *There is no reverse inequality of the form* $\phi(v^*(p)) \leq F(V^*(p))$ *, for any fixed* $F : \mathbb{R}_+ \to \mathbb{R}_+$ *. This can be seen by considering p supported on* [k], with $p_1 =$ $\log(k)/k$ and the remaining masses uniform. Then $V^*(p) \approx \log(k)/k$ while $\phi(v^*(p)) \approx$ $\log(k) \log(k/\log k)/k$.

Proposition III.1. *Let* $n \geq 10$ *and* $\beta = \log(n)$ *. Then,*

$$
f(n) = \frac{\beta^{-\beta} n^2 \left(\frac{n-\beta}{n}\right)^{\beta-n}}{2^{\beta}-2} \le \frac{81}{2}.
$$

Proof. To prove the above, we show that $f(n)$ is decreasing for $n > 200$. This means that the maximum of $f(n)$ may be numerically evaluated in the range $n \in \{10, ..., 200\}$. Finally, we verify that the maximum of $f(n)$ is attained for $n = 33$, and is bounded from above by 81/2 as desired. It remains to verify that $f(n)$ is decreasing for $n > 200$. Since $f(n)$ is non-negative, it is enough to show that $g(n) = \log f(n)$ is decreasing. Denote

$$
g(n) = -\beta \log \beta + 2 \log n + (n - \beta) \log(n - \beta) + (n - \beta) \log n - \log(2^{\beta} - 2). \tag{20}
$$

Taking the derivative of $q(n)$ we have,

$$
g'(n) = \frac{1}{n}(\log \beta + 1) + \frac{2}{n} + \left(1 - \frac{1}{n}\right)(-\log(n - \beta) - 1 + \log n) + \frac{n - \beta}{n} - \frac{1}{n}\frac{2^{\beta}\log 2}{2^{\beta} - 2} = \frac{1}{n}\left((n - 1)\log\frac{n}{n - \beta} - \log\beta - \beta + 2 - \frac{2^{\beta}\log 2}{2^{\beta} - 2}\right) \le \frac{1}{n}\left(n\log\frac{n}{n - \beta} - \log\beta - \beta + 2 - \log 2\right) \le \frac{1}{n}\left(\frac{n\beta}{n - \beta} - \log\beta - \beta + 2 - \log 2\right) = \frac{1}{n}\left(\frac{\beta^2}{n - \beta} - \log\beta + 2 - \log 2\right),
$$
\n(21)

where the first inequality follows from $\log(n/(n - \beta)) \ge 1$ and $2^{\beta}/(2^{\beta} - 2) \ge 1$, while the second inequality is due to Bernoulli's inequality, $(n/(n-\beta))^n \leq \exp(n\beta/(n-\beta)).$ Finally, it is easy to show that $\beta^2/(n-\beta)$ is decreasing for $n \ge 10$. This means that $\beta^2/(n-\beta) \le (\log 10)^2/(10 - \log(10))$ and $g'(n) < 0$ for $n > 200$. \Box

Lemma III.3 (generalized Fano method [2], Lemma 3). For $r \geq 2$, let \mathcal{M}_r be a *collection of r probability measures* $\nu_1, \nu_2, ..., \nu_r$ *with some parameter of interest* $\theta(\nu)$ *taking values in pseudo-metric space* (Θ, ρ) *such that for all* $j \neq k$ *, we have*

$$
\rho(\theta(\nu_j), \theta(\nu_k)) \ge \alpha
$$

and

$$
D(\nu_j \parallel \nu_k) \leq \beta.
$$

Then

$$
\inf_{\hat{\theta}} \max_{j \in [d]} \mathbb{E}_{Z \sim \mu_j} \rho(\hat{\theta}(Z), \theta(\nu_j)) \geq \frac{\alpha}{2} \left(1 - \left(\frac{\beta + \log 2}{\log r} \right) \right),
$$

where the infimum is over all estimators $\hat{\theta}$: $Z \mapsto \Theta$.

Proposition III.2. *Let* p *and* q *be two distributions with support size* n*. Define* p *by*

$$
p_1 = \frac{\log n}{2n \log \log n}, \quad p_i = \frac{1 - p_1}{n - 1}, \quad i > 1,
$$

and q by $q_2 = p_1$ *, and* $q_i = p_2$ *for* $i \neq 2$ *. Then,*

 (i) $||p - q||_{\infty} \geq c \frac{\log n}{n \log \log n}$ $\frac{\log n}{n \log \log n}$ for some $c > 0$ and all n sufficiently large. *(ii)* $\lim_{n\to\infty} \frac{n}{\log n} D(p||q) = \frac{1}{2}$

Proof. For the first part, it is enough to show that

$$
|p_1 - p_2| \ge c \log(n)/n \log \log n
$$

for some $c > 0$ and sufficiently large *n*. First, we show that $p_1 \geq p_2$ for $n \geq (\log n)^2$. That is,

$$
p_1 - \frac{1 - p_1}{n - 1} = \frac{np_1 - 1}{n - 1} > 0
$$
\n⁽²²⁾

for $np_1 > 1$. Next, fix $0 < c \leq 1/2$. We have,

$$
|p_1 - p_2| - \frac{c \log(n)}{n \log \log n} = \frac{ap_1 - 1}{n - 1} - \frac{c \log n}{n \log \log n} =
$$
\n
$$
\frac{1}{n - 1} \left(\frac{\log n}{2 \log \log n} - 1 - \frac{n - 1}{n} \frac{c \log n}{\log \log n} \right) =
$$
\n
$$
\frac{1}{(n - 1)2 \log \log n} \left(\log n \left(1 - \frac{n - 1}{n} 2c \right) - 2 \log \log n \right) > 0
$$
\n(23)

where the last inequality holds for $c(n-1)/n < 1/2$ and sufficiently large n, as desired. We now proceed to the second part of the proof.

$$
\frac{n}{\log n}D(p||q) = \frac{n}{\log n}\left(p_1\log\frac{p_1}{q_1} + p_2\log\frac{p_2}{q_2}\right) = \frac{n}{\log n}(p_1 - p_2)\log\frac{p_1}{p_2}.\tag{24}
$$

First, we have

$$
\frac{n}{\log n}(p_1 - p_2) = \frac{n}{\log n} \left(p_1 - \frac{1 - p_1}{n - 1} \right) = \frac{n}{\log n} \left(\frac{np_1 - 1}{n - 1} \right) = \frac{n}{\log n} \frac{\log n/2n \log \log n - 1}{n - 1} = \frac{n}{n - 1} \left(\frac{1}{2 \log \log n} - \frac{1}{\log n} \right).
$$
\n(25)

Next,

$$
\log \frac{p_1}{p_2} = \log(n-1) + \log \frac{p_1}{1-p_1} = \log(n-1) + \log \frac{\log n}{2n \log \log n - \log n} = (26)
$$

$$
\log(n-1) + \log \log n - 2 \log(2n \log \log n - \log n).
$$

Putting it all together we obtain

$$
\frac{n}{\log n} D(p||q) = \n\frac{n}{n-1} \left(\frac{1}{2 \log \log n} - \frac{1}{\log n} \right) (\log(n-1) + \log \log n - 2 \log(2n \log \log n - \log n)) =
$$
\n
$$
\frac{n}{n-1} \left(\frac{\log(n-1)}{2 \log \log n} - \frac{\log(n-1)}{\log n} + \frac{1}{2} - \frac{\log \log n}{\log n} - \frac{\log(2n \log \log n - \log n)}{2 \log \log n} + \frac{\log(2n \log \log n - \log n)}{\log n} \right) =
$$
\n
$$
\frac{n}{n-1} \left(\frac{1}{2} + \frac{\log(n-1) - \log(2n \log \log n - \log n)}{2 \log \log n} + \frac{\log(2n \log \log n - \log n)}{2 \log \log n} + \frac{\log(2n \log \log n - \log n)}{\log n} \right)
$$
\n
$$
\frac{\log(2n \log \log n - \log n) - \log(n-1)}{\log n} - \frac{\log \log n}{\log n} \right).
$$
\n(27)

It is straightforward to show that the last three terms in the parenthesis above converge to zero for sufficiently large n , which leads to the stated result. \Box

Lemma III.4 ([3]). When estimating a single Bernoulli parameter in the range $[0, p_0]$, $\Theta(p_0 \varepsilon^{-2} \log(1/\delta))$ draws are both necessary and sufficient to achieve additive accuracy ε *with probability at least* $1 - \delta$ *.*

B. Bernstein inequalities

Background: Let Y ~ Bin (n, θ) be a Binomial random variable and let $\hat{\theta} = Y/n$ be the its MLE.

• Classic Bernstein [4]:

$$
\mathbb{P}\left(\hat{\theta} - \theta \ge \varepsilon\right) \le \exp\left(-\frac{n\varepsilon^2}{2(\theta(1-\theta) + \varepsilon/3)}\right) \tag{28}
$$

with an analogous bound for the left tail. This implies:

$$
|\theta - \hat{\theta}| \le \sqrt{\frac{2\theta(1-\theta)}{n} \log \frac{2}{\delta}} + \frac{2}{3n} \log \frac{2}{\delta}.
$$
 (29)

• Empirical Bernstein [5, Lemma 5]:

$$
|\theta - \hat{\theta}| \le \sqrt{\frac{5\hat{\theta}(1-\hat{\theta})}{n}\log\frac{2}{\delta}} + \frac{5}{n}\log\frac{2}{\delta}.
$$
 (30)

We are now ready to present the proof of Theorem 5.

C. Proof of Theorem 5

Theorem 5. Let $p = p_{i \in \mathbb{N}}$ be a distribution over $\mathbb N$ and put $v^* = v^*(p)$, $V^* = V(p)$. For $n \geq 81$ *and* $\delta \in (0,1)$ *, we have that*

$$
\|p - \hat{p}\|_{\infty} \le 2\sqrt{\frac{V^*}{n} + \frac{v^*}{n}\log\frac{2}{\delta}} + \frac{4}{3n}\log\frac{2(n+1)}{\delta} + \frac{\log n}{n} \le (31)
$$

$$
2\sqrt{\frac{\phi(v^*)}{n} + \frac{v^*}{n}\log\frac{2}{\delta}} + \frac{4}{3n}\log\frac{2(n+1)}{\delta} + \frac{\log n}{n};
$$
 (32)

$$
\|p - \hat{p}\|_{\infty} \le 2\sqrt{\frac{v^* \log(n+1)}{n} + \frac{v^*}{n} \log\frac{2}{\delta}} + \frac{4}{3n} \log\frac{2(n+1)}{\delta} + \frac{\log n}{n}
$$
(33)

holds with probability at least $1 - \delta - 81/n$.

Proof. We assume without loss of generality that p is sorted in descending order: $p_1 \geq$ $p_2 \geq \ldots$ and further, as per Remark III.1, that $p_1 \leq 1/2$. The estimate \hat{p}_i is just the MLE based on n iid draws.

Our strategy for analyzing $\sup_{i \in \mathbb{N}} |\hat{p}_i - p_i|$ will be to break up p into the "heavy" masses, where we apply a maximal Bernstein-type inequality, and the "light" masses, where we apply a multiplicative Chernoff-type bound.

We define the "heavy" masses as those with $p_i \geq 1/n$. Denote by $I \subset \mathbb{N}$ the set of corresponding indices and note that $|I| \leq n$. For $i \in I$, put $Y_i = \hat{p}_i - p_i$. Then (28) implies that each Y_i satisfies (18) with $v_i = p_i(1 - p_i)/n$ and $a_i = 1/(3n)$; trivially, $\max_{i \in I} a_i \log(i+1) = \log((n+1)/(3n))$. Invoking Lemma III.1 twice (once for Y_i and again for $-Y_i$) together with the union bound,

we have, with probability $\geq 1 - \delta$,

$$
\max_{i \in I} |\hat{p}_i - p_i| \le 2\sqrt{\frac{V^*}{n} + \frac{v^*}{n} \log \frac{2}{\delta}} + \frac{4\log(n+1)}{3n} + \frac{4}{3n} \log \frac{2}{\delta}.
$$
 (34)

Next, we analyze the light masses. Our first "segment" consisted of the $p_i \in [n^{-1}, 1]$; these were the heavy masses. We take the next segment to consist of $p_i \in [(2n)^{-1}, n^{-1}]$, of which there are at most $2n$ atoms. The segment after that will be in the range $[(4n)^{-1}, (2n)^{-1}]$, and, in general, the kth segment is in the range $[(2^k n)^{-1}, (2^{k-1}n)^{-1}]$,

and will contain at most 2^kn atoms. To the kth segment, we apply the Chernoff bound $\mathbb{P}(\hat{p} \ge p + \varepsilon) \le \exp(-nD(p + \varepsilon||p)),$ where $p = (2^k n)^{-1}$ and $\varepsilon = \varepsilon_k = 2^k p\beta - p$, for some β to be specified below. [Note that $D(\alpha p||p)$ is monotonically increasing in p for fixed α , so we are justified in taking the left endpoint.] For this choice, in the kth segment we have

$$
D(p + \varepsilon || p) = D(2^{k} p \beta || p) = D\left(\frac{\beta}{n} \middle| \frac{1}{2^{k} n}\right)
$$

=
$$
\frac{(n - \beta) \log\left(\frac{2^{k}(n - \beta)}{2^{k} n - 1}\right) + \beta \log(2^{k} \beta)}{n}
$$

$$
\geq \frac{(n - \beta) \log\left(\frac{n - \beta}{n}\right) + \beta \log(2^{k} \beta)}{n},
$$

since neglecting the $-\frac{1}{2^k}$ additive term in the denominator decreases the expression. Let E be the event that *any* of the p_i s in any of the segments $k = 1, 2, \ldots$ has a corresponding \hat{p}_i that exceeds β/n . Then

$$
\mathbb{P}(E) \leq \sum_{k=1}^{\infty} 2^k n \exp\left(-(n-\beta)\log\left(\frac{n-\beta}{n}\right) - \beta \log\left(2^k\beta\right)\right) = \frac{2\beta^{-\beta} n \left(\frac{n-\beta}{n}\right)^{\beta-n}}{2^{\beta}-2}.
$$

For the choice $\beta = \log n$, we have

$$
\mathbb{P}(E) \le \frac{2\beta^{-\beta}n\left(\frac{n-\beta}{n}\right)^{\beta-n}}{2^{\beta}-2} \le \frac{81}{n}, \qquad n \ge 10,
$$
\n(35)

which is proved in Proposition III.1. Now E is the event that $\sup_{i:p_i\leq 1/n}(\hat{p}_i - p_i) \geq$ $\log(n)/n$. Since $p_i < 1/n$, there is no need to consider the left-tail deviation at this scale, as all of the probabilities will be zero. Combining (34) with (35) yields (31). Since Lemma III.2 implies that $V^* \le \phi(v^*)$, (32) follows from (31). Finally, (33) follows from (31) via the obvious relation $V^* \leq \log(n+1)v^*$. \Box

IV. A PROOF FOR THEOREM 6

We begin with an elementary observation: for $N \in \mathbb{N}$ and $a, b \in [0, 1]^N$, we have

$$
\left| \max_{i \in [N]} a_i (1 - a_i) - \max_{i \in [N]} b_i (1 - b_i) \right| \leq \max_{i \in [N]} |a_i - b_i|,
$$

and this also carries over to $a, b \in [0, 1]^{\mathbb{N}}$. Let us denote $v^* := \sup_{i \in \mathbb{N}} p_i(1 - p_i)$ and $\hat{v}^* := \sup_{i \in \mathbb{N}} \hat{p}_i (1 - \hat{p}_i).$

Together with (33), this implies

$$
|v^* - \hat{v}^*| \le ||p - \hat{p}||_{\infty} \le a + b\sqrt{v^*}
$$

where

$$
a = \frac{4}{3n} \log \frac{2(n+1)}{\delta} + \frac{\log n}{n},
$$

$$
b = 2\sqrt{\frac{\log(n+1)}{n} + \frac{1}{n} \log \frac{2}{\delta}}.
$$

Following the proof of Lemma 5 in [5],

$$
|v^* - \hat{v}^*| \le a + b\sqrt{v^*}
$$

\n
$$
\le a + b\sqrt{\hat{v}^* + |v^* - \hat{v}^*|}
$$

\n
$$
\le a + b\sqrt{\hat{v}^* + b\sqrt{|v^* - \hat{v}^*|}},
$$

where we used $v^* \leq \hat{v}^* + |v^* - \hat{v}^*|$ and $\sqrt{x + y} \leq$ √ $\overline{x} + \sqrt{y}$.

Now we have an expression of the form

$$
A \le B\sqrt{A} + C,
$$

where $A = |v^* - \hat{v}^*|$, $B = b$, $C = a + b$ √ $\overline{\hat{v}^*}$, which implies $A \leq B^2 + B$ √ $C+C$, or

$$
|v^* - \hat{v}^*| \le b^2 + a + b\sqrt{\hat{v}^*} + b\sqrt{a + b\sqrt{\hat{v}^*}}.
$$

Using $\sqrt{x+y} \leq$ √ $\overline{x} + \sqrt{y}$ and $\sqrt{xy} \le (x+y)/2$,

$$
|v^* - \hat{v}^*| \le b^2 + a + b\sqrt{\hat{v}^*} + b\sqrt{a} + b\sqrt{b\sqrt{\hat{v}^*}}
$$

\n
$$
\le b^2 + a + b\sqrt{\hat{v}^*} + b\sqrt{a} + b(b + \sqrt{\hat{v}^*})/2
$$

\n
$$
= a + 3b^2/2 + b\sqrt{a} + 3b\sqrt{\hat{v}^*}/2.
$$

We still have

$$
a + b\sqrt{v^*} \le a + 3b^2/2 + b\sqrt{a} + 3b\sqrt{\hat{v}^*}/2,
$$

whence, with probability $1 - \delta$,

$$
||p - \hat{p}||_{\infty} \le a + 3b^2/2 + b\sqrt{a} + 3b\sqrt{\hat{v}^*}/2.
$$
 (36)

V. A PROOF FOR THEOREM 7

We begin with the following proposition.

Proposition V.1. Assume there exists $V_\delta(X^n)$ such that

$$
\mathbb{P}\left(|p_j - \hat{p}_j| \ge V_\delta(X^n)|p_j = p_{[1]}\right) \le \delta. \tag{37}
$$

Then,

$$
\mathbb{E}(V_{\delta}(X^n)) \geq z_{\delta/2}\sqrt{\frac{p_{[1]}(1-p_{[1]})}{n}} + O\left(\frac{1}{n}\right).
$$

Proof. Assume there exists $V_\delta(X^n)$ that satisfies (37) and

$$
\mathbb{E}(V_{\delta}(X^n)) < z_{\delta/2}\sqrt{\frac{p_{[1]}(1-p_{[1]})}{n}} + O\left(\frac{1}{n}\right).
$$

From (37), we have that

$$
\mathbb{P}\left(|p_j - \hat{p}_j| \ge U_{\delta}(X^n)|p_j = p_{[1]}\right) = \mathbb{P}\left(|p_{[1]} - \hat{p}_j| \ge U_{\delta}(X^n)|p_j = p_{[1]}\right) \le \delta. \tag{38}
$$

Now, consider $Y \sim Bin(n, p_{[1]})$. Let Y^n be a sample of n independent observations. Notice we can always extend the Binomial case to a multinomial setup with parameters p, over any alphabet size $||p||_0$. That is, given a sample Y^n , we may replace every $Y = 0$ (or Y = 1) with a sample from a multinomial distribution over an alphabet size $||p||_0-1$. Further, we may focus on samples for which p_{1} is the most likely event in the alphabet, and construct a CI for p_{11} following (38). This means that we found a CI for p_{11} with an expected length that is shorter than the CP CI, which contradicts its optimality.

 \Box

Now, assume there exists $U_{\delta}(X^n)$ that satisfies

$$
\mathbb{P}\left(|p_j - \hat{p}_j| \ge U_\delta(X^n)\right) \le \delta. \tag{39}
$$

and

$$
\mathbb{E}(U_{\delta}(X^n)) < z_{\delta/2}\sqrt{\frac{p_{[1]}(1-p_{[1]})}{n}} + O\left(\frac{1}{n}\right). \tag{40}
$$

For simplicity of notation, denote $v = \arg \max_i p_i$ as the symbol with the greatest probability in the alphabet. That is, $p_v = p_{11}$. We implicitly assume that v is unique, although the proof holds in case of several maxima as well. We have that

$$
\mathbb{P}(|p_j - \hat{p}_j| \ge U_{\delta}(X^n)) =
$$
\n
$$
\sum_{u \in \mathcal{X}} \mathbb{P}(|p_j - \hat{p}_j| \ge U_{\delta}(X^n)|j = u) \mathbb{P}(j = u) =
$$
\n
$$
\mathbb{P}(|p_{[1]} - \hat{p}_j| \ge U_{\delta}(X^n)|j = v) \mathbb{P}(j = v) +
$$
\n
$$
\sum_{u \ne v} \mathbb{P}(|p_j - \hat{p}_j| \ge U_{\delta}(X^n)|j = u) \mathbb{P}(j = u).
$$
\n(41)

Proposition V.1 together with assumption (40) suggest that

$$
\mathbb{P}\left(|p_{[1]} - \hat{p}_j| \ge U_{\delta}(X^n)|j = v\right) > \delta.
$$

On the other hand, it is well-known that $\hat{p}_{[1]} \rightarrow p_{[1]}$ for sufficiently large n [6], [7], [8]. This means that $\mathbb{P}(j = u) \to 1$ and (41) is bounded from below by δ , for sufficiently large n . This contradicts (38) as desired.

APPENDIX A

We show that

$$
\sup_{p \in [0,1-1/n]} \left| (p(1-p))^k - ((p+1/n)(1-(p+1/n)))^k \right| \le \frac{k}{n \cdot 4^{k-1}} + \frac{3k(k-1)(k-2)}{n^3 \cdot 2^{2k-5}}
$$

Let $0 \le p \le 1/2 - 1/n$. Denote $f_k(p) = ((p(1-p))^k$. Applying Taylor series to $f_k(p+1/n)$ around $f_k(p)$ yields

$$
f_k\left(p + \frac{1}{n}\right) = f_k(p) + \frac{1}{n}f'_k(p) + r(p)
$$

where $r(p) = \frac{1}{3!}$ $\frac{1}{n^3}f'''(c)$ is the residual and $c \in [p, p + 1/n]$ [9]. We have

$$
f'_k(p) = k (p(1-p))^{k-1} (1-2p) \le k (p(1-p))^{k-1}
$$
\n
$$
f'''_k(p) = k(k-1)(k-2)p^{k-3}(1-p)^{k-3}(1-2p)^3 - 6k(k-1)p^{k-2}(1-p)^{k-2}(1-2p) \le k(k-1)p^{k-3}(1-p)^{k-3}((k-2) + 6p(1-p)).
$$
\n(42)

Hence,

$$
\sup_{p \in [0,1/2-1/n]} \left| (p(1-p))^k - ((p+1/n)(1-(p+1/n)))^k \right| =
$$
\n
$$
\sup_{p \in [0,1/2-1/n]} \left| -\frac{1}{n} f'_k(p) - \frac{1}{3!} \frac{1}{n^3} f'''(c) \right| \le \sup_{p \in [0,1/2-1/n]} \frac{1}{n} |f'_k(p)| + \frac{1}{3!} \frac{1}{n^3} |f'''(c)| \le
$$
\n
$$
\sup_{p \in [0,1/2-1/n]} \frac{k}{n} (p(1-p))^{k-1} + k(k-1)p^{k-3}(1-p)^{k-3} ((k-2) + 6p(1-p)) \le
$$
\n
$$
\frac{k}{n \cdot 4^{k-1}} + \frac{3k(k-1)(k-2)}{n^3 \cdot 2^{2k-5}}
$$
\n(12.11)

where

- (i) follows from (42).
- (ii) follows from the concavity of $(p(1-p))^k$ for $k \ge 1$.

APPENDIX B

We study $\min_m m/a^{1/m}$ for some positive a. This problem is equivalent to

$$
\min_{m} \log(m) - \frac{1}{m} \log(a).
$$

Taking its derivative with respect to m and setting it to zero yields

$$
\frac{d}{dm}\log(m) - \frac{1}{m}\log(a) = \frac{1}{m} + \frac{1}{m^2}\log(a) = 0.
$$

Hence, $m^* = \log(1/a)$. Therefore,

$$
\min_{m} m/a^{1/m} = \exp(\log(m^*) - (1/m^*)\log(a)) = \exp(1)\log(1/a). \tag{44}
$$

APPENDIX C

We study

$$
\min_{m \in \mathbb{R}^+} \left(\frac{\sqrt{m/2}}{\delta^{1/m}} \right) \exp\left(-\frac{1}{2} + \frac{1}{m} \right) \tag{45}
$$

This problem is equivalent to

$$
\min_{d \in \mathbb{R}^+} \frac{1}{2} \log(d) + \frac{1}{2d} \log\left(\frac{1}{\delta}\right) - \frac{1}{2} + \frac{1}{2d} \tag{46}
$$

where $d = m/2$. Taking its derivative with respect to d and setting it to zero yields

$$
\frac{1}{2d} - \frac{1}{2d^2} \left(\log \left(\frac{1}{\delta} \right) + 1 \right) = 0.
$$

Hence, $d^* = \log(1/\delta) + 1$. Therefore,

$$
\min_{d \in \mathbb{R}^+} \frac{1}{2} \log(d) + \frac{1}{2d} \log\left(\frac{1}{\delta}\right) - \frac{1}{2} + \frac{1}{2d} = \frac{1}{2} \log(\log(1/\delta) + 1) \tag{47}
$$

and

$$
\min_{m \in \mathbb{R}^+} \left(\frac{\sqrt{m/2}}{\delta^{1/m}} \right) \exp\left(-\frac{1}{2} + \frac{1}{m} \right) = \sqrt{\log\left(\frac{1}{\delta} \right) + 1}.
$$
 (48)

APPENDIX D

Proposition V.2. Let $p_{i \in \mathbb{N}}$ be a probability distribution over \mathbb{N} . Then,

$$
p_{[1]} = \max_{i \in \mathbb{N}} p_i (1 - p_i)
$$
 (49)

where $p_{[1]} = \max_{i \in \mathbb{N}} p_i$ *is the largest element in p.*

Proof. Let us first consider the case where $p_i \leq 1/2$ for all $i \in \mathbb{N}$. Then (49) follows directly from the montonicity of $p_i(1 - p_i)$ for $p_i \in [0, 1/2]$. Next, assume there exists a single $p_j > 1/2$. Specifically, $p_j = 1/2 + a$ for some positive a. Then, the remaining p_i 's are necessarily smaller than 1/2. Further, the maximum of $p_i(1 - p_i)$ over $i \neq j$ is obtained for $p_i = 1/2 - a$, from the same monotonicity reason. This means that $\max_{i\neq j} p_i(1-p_i) = (1/2 - a)(1 - (1/2 - a)) = (1/2 + a)(1 - (1/2 + a))$ where the second equality follows from the symmetry of $p_i(1 - p_i)$ around $p_i = 1/2$, which concludes the proof. \Box

REFERENCES

- [1] D. Cohen and A. Kontorovich, "Local glivenko-cantelli," in *The Thirty Sixth Annual Conference on Learning Theory, COLT*, vol. 195, 2023, p. 715.
- [2] B. Yu, "Assouad, Fano, and Le Cam," *Festschrift for Lucien Le Cam: research papers in probability and statistics*, pp. 423–435, 1997.
- [3] Y. Peres, "Learning a coin's bias (localized)," Theoretical Computer Science Stack Exchange, 2017, uRL:https://cstheory.stackexchange.com/q/38931 (version: 2017-08-28).
- [4] S. Boucheron, G. Lugosi, and O. Bousquet, "Concentration inequalities," in *Summer school on machine learning*. Springer, 2003, pp. 208–240.
- [5] S. Dasgupta and D. Hsu, "Hierarchical sampling for active learning," in *Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008*, 2008, pp. 208–215.
- [6] A. Gelfand, J. Glaz, L. Kuo, and T.-M. Lee, "Inference for the maximum cell probability under multinomial sampling," *Naval Research Logistics (NRL)*, vol. 39, no. 1, pp. 97–114, 1992.
- [7] X. Shifeng and L. Guoying, "Testing for the maximum cell probabilities in multinomial distributions," *Science in China Series A: Mathematics*, vol. 48, pp. 972–985, 2005.
- [8] S. Xiong and G. Li, "Inference for ordered parameters in multinomial distributions," *Science in China Series A: Mathematics*, vol. 52, no. 3, pp. 526–538, 2009.
- [9] K. R. Stromberg, *An introduction to classical real analysis*. American Mathematical Soc., 2015, vol. 376.