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I. A PROOF FOR THEOREM 3

We begin with the following proposition.

Proposition I.1. Let 5 > 0. Then, with probability 1 — 0,
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for every even m, where
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Proof. Define (n,d,p) = 3, S0, k™ *(np;(1 — p;))*. McDiarmind’s inequality sug-
gests that
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where 7 is the MLE over the same sample x", but with a different j** observation, xg



First, let us find ¢;. We have
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where

(i) Changing a single observation effects only two symbols (for example, p; and p,),
where the change is +1/n.
(i1) Please refer to Appendix A below.

Next, we have

W(n,d,p)) >;kak FEG( - )k =
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where the first inequality follows from Jensen Inequality and the equality that follows
is due to E(p;(1 — p;)) = p(1 — p)(1 — 1/n). Going back to McDiarmind’s inequality,
we have
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In word, the probability that the random variable Z = (n,d,p) is smaller than a
constant C' = E(¢)(n, d, p)) — € is not greater that v = exp (—QEQ/ZJ G
it necessarily means that the probability that Z is smaller than a constant smaller than

. Therefore,



C, is also not greater than v. Hence, plugging (5) we obtain

P <(1 _ %) (. d,p) > (. d,p) + e) < oxp (izi>

Setting the right hand side to equal J, we get
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and with probability 1 — 0o,
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Finally, we apply the union bound with § = §; and Proposition I.1 to obtain the stated

result.

II. A PROOF FOR COROLLARY 4
We prove the Corollary with two propositions.

Proposition I1.1. Let 61 > 0. Then, with probability 1 — ¢,
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Proof. First, we have
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where d = n/2 and



(i) follows from (15) in the main text .
(i) follows from k™% < d™ for every k € {1, ...,d}.
Applying Markov’s inequality we obtain
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Setting the right hand side to equal 9, yields
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Proposition I1.2. Let 65 > 0. Then, with probability 1 — 6,
d
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Proof. McDiarmind’s inequality suggests that
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First, let us find ¢;. We have
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where
(i) Changing a single observation effects only two symbols (for example, p; and p,),
where the change is +1/n.
(i1) Please refer to Appendix A.
(iii) Follows from Y ¢_, 75 =43 & <dand
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where the maximum is obtain for £* = 3/log(4).
next, we have
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Going back to McDiarmind’s inequality, we have
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Plugging (15) we obtain
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Setting the right hand side to equal J, we get
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and with probability 1 — 0o,
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Finally, we apply the union bound to Propositions II.1 and IL.2 to obtain
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with probability 1 — d; — ds. Define g(m, d1) = m/ (ﬂ/ ™. Further, it is immediate to show




that (m/2)/™ < /exp(1/exp(1)). Hence, with probability 1 — d; — J,
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for every even m, where b = \/2exp(1/exp(1)). Finally, we would like to choose m
which minimizes g(m, d;). We show in Appendix B that inf,, g(m, d;) = exp(1) log(1/d;),

where and the infimum is obtained for a choice of m* = log(1/4;).

III. A PROOF OF THEOREM 5

Let us first introduce some auxiliary results and background

A. Auxiliary Results

Lemma III.1 (contained in the proof of Lemma 10, [1]). Let Yic;cn be random variables
such that, for each i € I, there are v; > 0 and a; > 0 satisfying

2
Y > < - > (. 1
P(Y;>¢e) < exp( 2(Ui+ai5))’ e>0 (18)

Put

* *

v i=sup,e v, Voi=supiepvilog(i + 1), af i=sup;era;,  AY i=sup;a;log(i +1). (19)

1 1
P (squi > 24/ V* —H}*logg + 4 A* —|—4a*logg> < 0.
el

Remark III.1. When considering the random variable Z = sup,cy |p; — pi
Yi| = |p; — pil is distributed

Then

, there is no

loss of generality in assuming that p; < 1/2, i € N. Indeed,
as |n~! Bin(n, p;) — pi|, and the latter distribution is invariant under the transformation

pi = 1 —ps.

Lemma IIL.2. For any distribution p;cy,

Vip) < ¢(v*(p)).



Proof. (This elegant proof idea is due to Vaclav Voracek.) There is no loss of generality
in assuming p = p*. The claim then amounts to

supv; log(i + 1) < v*log l*

ieN v
The monotonicity of the p; implies p; < (p1 + ... +p;)/i < 1/i. Now =z < 1/i =
x(l—2) <1/(i+1) fori € N, and hence v; < 1/(i+1). Thus, v; log(i+1) < v;log Ui
Finally, since xlog(1/x) is increasing on [0, 1/4], which is the range of the v;, we have

sup;cy Vi log vi <v*log Ui O

Remark IIL.2. There is no reverse inequality of the form ¢(v*(p)) < F(V*(p)), for any
fixed F : Ry — R,. This can be seen by considering p supported on [k|, with p; =
log(k)/k and the remaining masses uniform. Then V*(p) = log(k)/k while ¢p(v*(p)) =~
log(k) log(k/log k) /k.

Proposition IIL.1. Letr n > 10 and = log(n). Then,

e )T s

fm ¥ 2  ~ 3

Proof. To prove the above, we show that f(n) is decreasing for n > 200. This means
that the maximum of f(n) may be numerically evaluated in the range n € {10, ...,200}.
Finally, we verify that the maximum of f(n) is attained for n = 33, and is bounded
from above by 81/2 as desired. It remains to verify that f(n) is decreasing for n > 200.
Since f(n) is non-negative, it is enough to show that g(n) = log f(n) is decreasing.
Denote

g(n) = —Blog B + 2logn + (n — ) log(n — ) + (n — B)logn — log(2° —2). (20)



Taking the derivative of g(n) we have,
9/<n) = (1)
1 2 1 n—B 12°log2
_5(10g5+1)+ﬁ+(1—5)(—10g(n—ﬁ)—1+logn)+ p_1 82 _

n 20 —2
8
n 2 10g2><

—logB —p+2

( n—p 282
(

" —logﬁ—ﬁ+2—log2) §l<ﬂ—logﬂ—ﬁ+2—log2):
—p n\n—_

52
(n —logﬁ+2—log2),

where the first inequality follows from log(n/(n — 3)) > 1 and 2°/(2° — 2) > 1, while
the second inequality is due to Bernoulli’s inequality, (n/(n — 3))" < exp(n8/(n—f)).

Sl 3l 31

Finally, it is easy to show that 3%/(n — () is decreasing for n > 10. This means that
5%/(n — ) < (log10)?/(10 — log(10)) and ¢'(n) < 0 for n > 200. O

Lemma IIL.3 (generalized Fano method [2], Lemma 3). For r > 2, let M, be a
collection of r probability measures vy, s, ..., v, with some parameter of interest 0(v)

taking values in pseudo-metric space (O, p) such that for all j # k, we have

p(0(v),0(vk)) >

and
D(vj || vi) < B.
Then
i%frjré%Ezwm(é(Z)ﬁ(Vj)) > % <1 - (61%;?’2)) ,
where the infimum is over all estimators 0:7+— 0.
Proposition II1.2. Let p and q be two distributions with support size n. Define p by

logn 1—p

D1 , 1> 1,

:2nloglogn’ L
and q by qs = py, and q; = ps for i # 2. Then,

(i) lp—qlly > cnli‘;gl:gn for some ¢ > 0 and all n sufficiently large.
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. . 1
(”) hmn—>oo ﬁD(pHQ) =3
Proof. For the first part, it is enough to show that
|p1 — pa| > clog(n)/nloglogn

for some ¢ > 0 and sufficiently large n. First, we show that p; > p, for n > (logn)?.
That is,

l=p np -1

— 22

P n—1 n—1 >0 (22)
for np; > 1. Next, fix 0 < ¢ < 1/2. We have,
clog(n ap; — 1 clogn

‘pl_pQ‘_ g() == - 8 (23)

nloglogn n—1 nloglogn B
1 logn ] n—1 clogn \
n—1 \2loglogn n loglogn /)

! logn (1-""L2c) —2loglogn ) > 0
(n—1)2loglogn &1 n glosn

where the last inequality holds for ¢(n —1)/n < 1/2 and sufficiently large n, as desired.

We now proceed to the second part of the proof.

n n n
D(pllg) = —— (pilog 2 + polog 22 ) = ——(py —pa) log 2. (24)
logn logn Q1 G2 logn D2
First, we have
n n 1—pm n np; — 1
10gn<p1 p2) logn <p1 n—l) logn( n—1 ) (23)
n logn/2nloglogn —1  n 1 1
logn n—1 ~n—1\2loglogn logn/’
Next,
1
log L} =log(n — 1) 4 log v _ log(n — 1) + log g = (20)
Do 1—m 2nloglogn — logn

log(n — 1) + loglogn — 2log(2nloglogn — logn).



11

Putting it all together we obtain

n
lognD(qu) = (27)
. S (log(n — 1) + loglogn — 2log(2n loglogn — logn)) =
n—1\2loglogn logn ogn oglogn og(2nloglogn —logn)) =
n (log(n—1) log(n—1) N 1 loglogn
n—1\ 2loglogn logn 2 log n

log(2nloglogn — logn) N log(2nloglogn —logn)\
2loglogn logn N
n (1 N log(n — 1) — log(2nloglogn — logn) N

n—1\2 2loglogn
log(2nloglogn —logn) —log(n —1) loglogn
logn logn )’

It is straightforward to show that the last three terms in the parenthesis above converge

to zero for sufficiently large n, which leads to the stated result. ]

Lemma IIL.4 ([3]). When estimating a single Bernoulli parameter in the range [0, po),
O(poc~2log(1/8)) draws are both necessary and sufficient to achieve additive accuracy
€ with probability at least 1 — .

B. Bernstein inequalities

Background: Let Y ~ Bin(n,0) be a Binomial random variable and let § = Y/n be the
its MLE.

o Classic Bernstein [4]:

2

P(é—ezg) < em)(—%m1z§)+am> (28)

with an analogous bound for the left tail. This implies:

A 2001—0), 2 2 2
—0 < 2 og s+ Zlog Z.
0—0] < \/ - log 5 + 0 log 5 (29)

« Empirical Bernstein [5, Lemma 5]:

R 50(1 — 6 2 5. 2
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We are now ready to present the proof of Theorem 5.

C. Proof of Theorem 5

Theorem 5. Let p = p;en be a distribution over N and put v* = v*(p), V* = V(p). For
n > 81 and § € (0,1), we have that

R V= o* 2 4 2(n+1 logn
Ip = Pl <24/ — + —log < + —log (vl logn 31)
n n 0 3n ) n

2\/¢(v*) v 2 4 2(n+1) N logn

n +g10g5+3—n10g 5 " : (32)
*1 1 £ 92 42 1 1
Ip— gl SQ\/%+U_IOg_+_IOg (n+1)  logn
~ n n 0  3n ) n

holds with probability at least 1 — 6 — 81 /n.

Proof. We assume without loss of generality that p is sorted in descending order: p; >
po > ... and further, as per Remark IIL.1, that p; < 1/2. The estimate p; is just the
MLE based on n iid draws.

Our strategy for analyzing sup;.y [p; — p;| Wwill be to break up p into the “heavy”
masses, where we apply a maximal Bernstein-type inequality, and the “light” masses,
where we apply a multiplicative Chernoff-type bound.

We define the “heavy” masses as those with p; > 1/n. Denote by I C N the set of
corresponding indices and note that |I| < n. For i € I, put Y; = p; — p;. Then (28)
implies that each Y; satisfies (18) with v; = p;(1 — p;)/n and a; = 1/(3n); trivially,
max;er a;log(i + 1) = log(n + 1)/(3n). Invoking Lemma IIL.1 twice (once for Y; and
again for —Y;) together with the union bound,

we have, with probability > 1 — ¢,

V= v 2 dlog(n+1) 4 2
rrilealx|p Pl = n+n0g5+ 3n +3n Og(5

Next, we analyze the light masses. Our first “segment” consisted of the p; € [n™!, 1];

(34)

these were the heavy masses. We take the next segment to consist of p; € [(2n)~!,n™1],
of which there are at most 2n atoms. The segment after that will be in the range
[(4n)~1, (2n)7!], and, in general, the kth segment is in the range [(2n)~!, (281n)~Y],
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and will contain at most 2¥n atoms. To the kth segment, we apply the Chernoff bound
P(p > p+e) < exp(—nD(p + €||p)), where p = (2*n)~! and € = ¢, = 2*pB — p,
for some [ to be specified below. [Note that D(ap||p) is monotonically increasing in p
for fixed «, so we are justified in taking the left endpoint.] For this choice, in the kth

segment we have

Dio-+elly) = D@willy) = (2 5 )
(n— B)log (522 ) + Blog (2°)

n

(n — B)log ("2) + Blog (2¢3)

- Y

n

since neglecting the —1/2% additive term in the denominator decreases the expression.
Let E be the event that any of the p;s in any of the segments £ = 1,2,... has a
corresponding p; that exceeds (/n. Then

0o — n—p3 B—n
k n—_p k 2 ﬁn( n )
;2 n exp (—(n—ﬁ)log( - )—510g(2 ﬁ))— 5 3
For the choice S = logn, we have

928—Bn (=58 p—n 1
26 — 2 n

n > 10, (35)

which is proved in Proposition IIl.1. Now E is the event that sup,,, ., /n(ﬁi —p) >
log(n)/n. Since p; < 1/n, there is no need to consider the left-tail deviation at this
scale, as all of the probabilities will be zero. Combining (34) with (35) yields (31).
Since Lemma IIL.2 implies that V* < ¢(v*), (32) follows from (31). Finally, (33)
follows from (31) via the obvious relation V* < log(n + 1)v*. O

IV. A PROOF FOR THEOREM 6

We begin with an elementary observation: for N € N and a,b € [0, 1]V, we have

maxa;(1 —a;) —maxb;(1 —b;)| < max|a; — b,
1€[N] 1€[N] 1€[N]
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and this also carries over to a,b € [0,1]". Let us denote v* := sup;cypi(1 — p;) and

0" = SupieNﬁz‘(l _ﬁz‘)-

Together with (33), this implies

0" — "] < |lp— Pl < a+ bV

where

b

Following the proof of Lemma 5 in [5],

v =

A A

<

) n '
1 1 1 2
og(n+1) Liog 2.
n n 1)

a + bvv*

a+ by\/0* + |v* — 0|

a+bVor + by/|or — 7],

where we used v* < 9* + [v* — 0*| and /2 +y < Vo + /Y.
Now we have an expression of the form

where A = |[v* —©*|, B =0b, C' = a + b\/0*, which implies A < B>+ BV/C + C, or

v — 0" < b+ a+bVor + by a+ bV

A< BVA+C,

Using /z +y < /x4 /y and /2y < (2 +y)/2,

o = '

We still have

<
<

W + a+ bVo* + by/a+ b\ bVi*
W + a+ bV + by/a + b(b+ Vo*) /2
a+ 3% /2 4 by/a + 30V /2.

a+ Vot < a+ 362 /24 by/a+ 30V /2,



whence, with probability 1 — 4,

Ilp — pll., < a+36°/2+ by/a+ 30V /2. (36)

V. A PROOF FOR THEOREM 7

We begin with the following proposition.

Proposition V.1. Assume there exists Vs(X™) such that

P (|p; — pj| = Vs(X™)|p; = pp)) < 6. (37)

Then,

1— 1
E(V3(X") = 22 95i77£@l+49(5).

Proof. Assume there exists V5(X™) that satisfies (37) and

E(V5(X™)) < 25 = pw) o (l> .

n n

From (37), we have that

P (lp; — p;] = Us(X™)|p; = ppy)) =P (Ippy — 5] = Us(X™)|p; = ppy) < 6. (38)

Now, consider Y ~ Bin(n,pp;)). Let Y be a sample of n independent observations.
Notice we can always extend the Binomial case to a multinomial setup with parameters
p, over any alphabet size ||p||o. That is, given a sample Y™, we may replace every Y = 0
(or Y = 1) with a sample from a multinomial distribution over an alphabet size ||p||o— 1.
Further, we may focus on samples for which py;j is the most likely event in the alphabet,
and construct a CI for py;) following (38). This means that we found a CI for pj;; with
an expected length that is shorter than the CP CI, which contradicts its optimality.

[]

Now, assume there exists Us(X") that satisfies

P (Ip; — pj| > Us(X™)) < 6. (39)
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and

1— 1
E(Us(X™) < 25/ P — Pm) - P | o (5) . (40)

For simplicity of notation, denote v = argmax;p; as the symbol with the greatest
probability in the alphabet. That is, p, = pp;;. We implicitly assume that v is unique,
although the proof holds in case of several maxima as well. We have that

P(lp; — bl = Us(X™)) = (41)
> Py — 5l = Us(XM)]j = ) P(j = w) =

ueX
P (Ipp) — il > Us(X™)]j = v) P(j = v)+
Y Pllp; =55 = Us(X™)]j = w)P(j = u).
uFv

Proposition V.1 together with assumption (40) suggest that

P (Ipp) — 9| > Us(X™)]j = v) > 4.

On the other hand, it is well-known that pj;; — ppy; for sufficiently large n [6], [7], [8].
This means that P(; = u) — 1 and (41) is bounded from below by 4, for sufficiently

large n. This contradicts (38) as desired.

APPENDIX A

We show that

s = p) = (o)1= (o 1)) < i+ P

Let 0 < p < 1/2 — 1/n. Denote fi(p) = ((p(1 — p))". Applying Taylor series to
fr(p+1/n) around fi(p) yields

i (p + %) = fe(p) + %fé(p) +7(p)
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where r(p) = 3,75 /" (c) is the residual and ¢ € [p,p + 1/n] [9]. We have

filp) =k (p(1 —p) (1 =2p) <k (p(1 —p)*" 42)
v(p) = k(k—1)(k—2)p" (1 — p)*?(1 = 2p)® — 6k(k — 1)p* (1 — p)* (1 — 2p) <
k(k —1)p" (1= p)* 7 ((k — 2) + 6p(1 — p)) .
Hence,
o e =) = (4 U A— o +1/m))] = (43)
]' ! ]' ]' n ]' ! 1 ]' " (1)
pe[o,%lgp_un] | a ﬁfk(p) B yﬁf (C)| = pE[O,?l/JQIil/n] Elfk(p)‘ + gﬁ‘f (C>‘ =

k _ B B (ii)
sup = (p(1—p)" "+ k(k = D)3 (1 = p)* B ((k = 2) + 6p(1 — p)) <
p€el0,1/2—1/n] T

ko 3k(k—1)(k—2)
n - 4k—1 n3 . 92k—5

where

(1) follows from (42).
(i) follows from the concavity of (p(1 — p))* for k > 1.

APPENDIX B

We study min,,, m/a'/™ for some positive a. This problem is equivalent to

1
min log(m) — — log(a).
m

m

Taking its derivative with respect to m and setting it to zero yields

1 1 1
% log(m) — - log(a) = - + g log(a) = 0.
Hence, m* = log(1/a). Therefore,
minm/a"™ = exp(log(m*) — (1/m*)log(a)) = exp(1) log(1/a). (44)

m



APPENDIX C

i (Y72 ) o (54 1) 4s)

We study

meRT 51/m

This problem is equivalent to

1 1 1y 11
in - log(d) + —log [~ | — = + — 46
ﬁﬁgzog(szog(&) 2" 24 (46)

where d = m/2. Taking its derivative with respect to d and setting it to zero yields

1 1 1

Hence, d* = log(1/6) + 1. Therefore,

1 1 1 1 1 1
Inin o log(d) + 2 log (5) —5t5:=3 log(log(1/0) + 1) 47)
and
. v/m/2 1y 1
mme]an+ ( Si/m ) exp (—5 + E) =4 /log <5> + 1. (48)
APPENDIX D

Proposition V.2. Let p;cn be a probability distribution over N. Then,
= (1 —p; 4
Py = maxpi(l — p;) (49)
where pp) = maX;en p; Is the largest element in p.

Proof. Let us first consider the case where p; < 1/2 for all i € N. Then (49) follows
directly from the montonicity of p;(1 — p;) for p; € [0, 1/2]. Next, assume there exists
a single p; > 1/2. Specifically, p; = 1/2 + a for some positive a. Then, the remaining
pi’s are necessarily smaller than 1/2. Further, the maximum of p;(1 — p;) over i # j
is obtained for p; = 1/2 — a, from the same monotonicity reason. This means that
max; 4 pi(1 — pi) = (1/2 —a)(1 — (1/2 —a)) = (1/2 4+ a)(1 — (1/2 + a)) where
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the second equality follows from the symmetry of p;(1 — p;) around p; = 1/2, which

concludes the proof. ]

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
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